378 research outputs found

    Learning through social spaces: migrant women and lifelong learning in post-colonial London

    Get PDF
    This article shows how migrant women engage in learning through social spaces. It argues that such spaces are little recognised, and that there are multiple ways in which migrant women construct and negotiate their informal learning through socialising with other women in different informal modes. Additionally, the article shows how learning is shaped by the socio-political, geographical and multicultural context of living in London, outlining ways in which gendered and racialised identities shape, construct and constrain participation in lifelong learning. The article shows that one way in which migrant women resist (post)colonial constructions of difference is by engaging in informal and non-formal lifelong learning, arguing that the benefits are (at least) two-fold. The women develop skills (including language skills) but also use their informal learning to develop what is referred to in this article as 'relational capital'. The article concludes that informal lifelong learning developed through social spaces can enhance a sense of belonging for migrant women

    How dynamic capabilities drive performance in the Indian IT industry : the role of information and co-ordination

    Full text link
    This study examines key issues and effects of capability management on a fast-growing area of knowledge-intensive global business services &ndash; IT outsourcing and offshoring. An exploratory study is undertaken of Indian companies providing complex process-oriented offshore IT services to their global customers. The analysis of the data related to the service provider side shows that developing dynamic capabilities is strongly driven by management and top-clients and results in the development of business processes and in establishing a strategic partnership with the client organization. Key findings are that information exchange and coordination are the key to a leveraging firm performance.<br /

    Pion and proton showers in the CALICE scintillator-steel analogue hadron calorimeter

    Full text link
    Showers produced by positive hadrons in the highly granular CALICE scintillator-steel analogue hadron calorimeter were studied. The experimental data were collected at CERN and FNAL for single particles with initial momenta from 10 to 80 GeV/c. The calorimeter response and resolution and spatial characteristics of shower development for proton- and pion-induced showers for test beam data and simulations using Geant4 version 9.6 are compared.Comment: 26 pages, 16 figures, JINST style, changes in the author list, typos corrected, new section added, figures regrouped. Accepted for publication in JINS

    Hadron shower decomposition in the highly granular CALICE analogue hadron calorimeter

    Get PDF
    The spatial development of hadronic showers in the CALICE scintillator-steel analogue hadron calorimeter is studied using test beam data collected at CERN and FNAL for single positive pions and protons with initial momenta in the range from 10 to 80 GeV/c. Both longitudinal and radial development of hadron showers are parametrised with two-component functions. The parametrisation is fit to test beam data and simulations using the QGSP_BERT and FTFP_BERT physics lists from Geant4 version 9.6. The parameters extracted from data and simulated samples are compared for the two types of hadrons. The response to pions and the ratio of the non-electromagnetic to the electromagnetic calorimeter response, h/e, are estimated using the extrapolation and decomposition of the longitudinal profiles.Comment: 38 pages, 19 figures, 5 tables; author list changed; submitted to JINS

    The MYST-Containing Protein Chameau Is Required for Proper Sensory Organ Specification during Drosophila Thorax Morphogenesis

    Get PDF
    The adult thorax of Drosophila melanogaster is covered by a stereotyped pattern of mechanosensory bristles called macrochaetes. Here, we report that the MYST containing protein Chameau (Chm) contributes to the establishment of this pattern in the most dorsal part of the thorax. Chm mutant pupae present extra-dorsocentral (DC) and scutellar (SC) macrochaetes, but a normal number of the other macrochaetes. We provide evidences that chm restricts the singling out of sensory organ precursors from proneural clusters and genetically interacts with transcriptional regulators involved in the regulation of achaete and scute in the DC and SC proneural cluster. This function of chm likely relies on chromatin structure regulation since a protein with a mutation in the conserved catalytic site fails to rescue the formation of supernumerary DC and SC bristles in chm mutant flies. This is further supported by the finding that mutations in genes encoding chromatin modifiers and remodeling factors, including Polycomb group (PcG) and Trithorax group (TrxG) members, dominantly modulate the penetrance of chm extra bristle phenotype. These data support a critical role for chromatin structure modulation in the establishment of the stereotyped sensory bristle pattern in the fly thorax

    Gγ1, a Downstream Target for the hmgcr-Isoprenoid Biosynthetic Pathway, Is Required for Releasing the Hedgehog Ligand and Directing Germ Cell Migration

    Get PDF
    The isoprenoid biosynthetic pathway leading from the production of mevalonate by HMGCoA reductase (Hmgcr) to the geranylation of the G protein subunit, Gγ1, plays an important role in cardiac development in the fly. Hmgcr has also been implicated in the release of the signaling molecule Hedgehog (Hh) from hh expressing cells and in the production of an attractant that directs primordial germ cells to migrate to the somatic gonadal precursor cells (SGPs). The studies reported here indicate that this same hmgcr→Gγ1 pathway provides a novel post-translational mechanism for modulating the range and activity of the Hh signal produced by hh expressing cells. We show that, like hmgcr, gγ1 and quemao (which encodes the enzyme, geranylgeranyl diphosphate synthetase, that produces the substrate for geranylation of Gγ1) are components of the hh signaling pathway and are required for the efficient release of the Hh ligand from hh expressing cells. We also show that the hmgcr→Gγ1 pathway is linked to production of the germ cell attractant by the SGPs through its ability to enhance the potency of the Hh signal. We show that germ cell migration is disrupted by the loss or gain of gγ1 activity, by trans-heterozygous combinations between gγ1 and either hmgcr or hh mutations, and by ectopic expression of dominant negative Gγ1 proteins that cannot be geranylated

    Testing Hadronic Interaction Models using a Highly Granular Silicon-Tungsten Calorimeter

    Get PDF
    A detailed study of hadronic interactions is presented using data recorded with the highly granular CALICE silicon-tungsten electromagnetic calorimeter. Approximately 350,000 selected negatively charged pion events at energies between 2 and 10 GeV have been studied. The predictions of several physics models available within the Geant4 simulation tool kit are compared to this data. A reasonable overall description of the data is observed; the Monte Carlo predictions are within 20% of the data, and for many observables much closer. The largest quantitative discrepancies are found in the longitudinal and transverse distributions of reconstructed energy.Comment: 28 pages, 24 figures, accepted for publication in NIM

    Hmgcr in the Corpus Allatum Controls Sexual Dimorphism of Locomotor Activity and Body Size via the Insulin Pathway in Drosophila

    Get PDF
    The insulin signaling pathway has been implicated in several physiological and developmental processes. In mammals, it controls expression of 3-Hydroxy-3-Methylglutaryl CoA Reductase (HMGCR), a key enzyme in cholesterol biosynthesis. In insects, which can not synthesize cholesterol de novo, the HMGCR is implicated in the biosynthesis of juvenile hormone (JH). However, the link between the insulin pathway and JH has not been established. In Drosophila, mutations in the insulin receptor (InR) decrease the rate of JH synthesis. It is also known that both the insulin pathway and JH play a role in the control of sexual dimorphism in locomotor activity. In studies here, to demonstrate that the insulin pathway and HMGCR are functionally linked in Drosophila, we first show that hmgcr mutation also disrupts the sexual dimorphism. Similarly to the InR, HMGCR is expressed in the corpus allatum (ca), which is the gland where JH biosynthesis occurs. Two p[hmgcr-GAL4] lines were therefore generated where RNAi was targeted specifically against the HMGCR or the InR in the ca. We found that RNAi-HMGCR blocked HMGCR expression, while the RNAi-InR blocked both InR and HMGCR expression. Each RNAi caused disruption of sexual dimorphism and produced dwarf flies at specific rearing temperatures. These results provide evidence: (i) that HMGCR expression is controlled by the InR and (ii) that InR and HMGCR specifically in the ca, are involved in the control of body size and sexual dimorphism of locomotor activity
    corecore