39 research outputs found
Phenology-dependent cold exposure and thermal performance of Ostrinia nubilalis ecotypes
Background Understanding adaptation involves establishing connections between selective agents and beneficial population responses. However, relatively little attention has been paid to seasonal adaptation, in part, because it requires complex and integrative knowledge about seasonally fluctuating environmental factors, the effects of variable phenology on exposure to those factors, and evidence for temporal specialization. In the European corn borer moth, Ostrinia nubilalis, sympatric pheromone strains exploit the same host plant (Zea mays) but may genetically differ in phenology and be reproductively “isolated by time.” Z strain populations in eastern North America have been shown to have a prolonged larval diapause and produce one annual mating flight (July), whereas E strain populations complete an earlier (June) and a later (August) mating flight by shortening diapause duration. Here, we find evidence consistent with seasonal “adaptation by time” between these ecotypes. Results We use 12 years of field observation of adult seasonal abundance to estimate phenology of ecotype life cycles and to quantify life-stage specific climatic conditions. We find that the observed reduction of diapause duration in the E strain leads their non-diapausing, active life stages to experience a ~ 4 °C colder environment compared to the equivalent life stages in the Z strain. For a representative pair of populations under controlled laboratory conditions, we compare life-stage specific cold tolerance and find non-diapausing, active life stages in the E strain have as much as a 60% greater capacity to survive rapid cold shock. Enhanced cold hardiness appears unrelated to life-stage specific changes in the temperature at which tissues freeze. Conclusions Our results suggest that isolation by time and adaptation by time may both contribute to population divergence, and they argue for expanded study in this species of allochronic populations in nature experiencing the full spectrum of seasonal environments. Cyclical selective pressures are inherent properties of seasonal habitats. Diverse fluctuating selective agents across each year (temperature, predation, competition, precipitation, etc.) may therefore be underappreciated drivers of biological diversity
Developmental specialization and geographic structure of host plant use in a polyphagous grasshopper, Schistocerca emarginata (=lineata) (Orthoptera: Acrididae). Oecologia 120
Abstract Host plant use and availability were determined in early nymphal and adult-stage Schistocerca emarginata (=lineata) (Orthoptera: Acrididae) populations at six localities in Texas, USA. Early instar nymphal populations were feeding almost exclusively on either Ptelea trifoliata (Rutaceae) or Rubus trivialis (Rosaceae). This study represents the ®rst demonstration of a geographic structure of host plant speci®city in a polyphagous grasshopper. Recognizing this geographic structure required investigations of both developmental and geographical variation in host plant use. Nymphal diet breadths were signi®cantly less than adult diet breadths at four of six localities and smaller overall when pooled nymphal and adult diet breadths were compared among sites. Neither restricted nymphal mobility nor host plant availability accounted for the observed dierences in host plant use between developmental stages and among localities. Evidence suggests that the dierences in host use among populations are due to host-plant-associated genetic dierentiation
bric a brac controls sex pheromone choice by male European corn borer moths
The sex pheromone system of similar to 160,000 moth species acts as a powerful form of assortative mating whereby females attract conspecific males with a species-specific blend of volatile compounds. Understanding how female pheromone production and male preference coevolve to produce this diversity requires knowledge of the genes underlying change in both traits. In the European corn borer moth, pheromone blend variation is controlled by two alleles of an autosomal fatty-acyl reductase gene expressed in the female pheromone gland (pgFAR). Here we show that asymmetric male preference is controlled by cis-acting variation in a sex-linked transcription factor expressed in the developing male antenna, bric a brac (bab). A genome-wide association study of preference using pheromone-trapped males implicates variation in the 293kb bab intron 1, rather than the coding sequence. Linkage disequilibrium between bab intron 1 and pgFAR further validates bab as the preference locus, and demonstrates that the two genes interact to contribute to assortative mating. Thus, lack of physical linkage is not a constraint for coevolutionary divergence of female pheromone production and male behavioral response genes, in contrast to what is often predicted by evolutionary theory
Copy-Number Variation: The Balance between Gene Dosage and Expression in Drosophila melanogaster
Copy-number variants (CNVs) reshape gene structure, modulate gene expression, and contribute to significant phenotypic variation. Previous studies have revealed CNV patterns in natural populations of Drosophila melanogaster and suggested that selection and mutational bias shape genomic patterns of CNV. Although previous CNV studies focused on heterogeneous strains, here, we established a number of second-chromosome substitution lines to uncover CNV characteristics when homozygous. The percentage of genes harboring CNVs is higher than found in previous studies. More CNVs are detected in homozygous than heterozygous substitution strains, suggesting the comparative genomic hybridization arrays underestimate CNV owing to heterozygous masking. We incorporated previous gene expression data collected from some of the same substitution lines to investigate relationships between CNV gene dosage and expression. Most genes present in CNVs show no evidence of increased or diminished transcription, and the fraction of such dosage-insensitive CNVs is greater in heterozygotes. More than 70% of the dosage-sensitive CNVs are recessive with undetectable effects on transcription in heterozygotes. A deficiency of singletons in recessive dosage-sensitive CNVs supports the hypothesis that most CNVs are subject to negative selection. On the other hand, relaxed purifying selection might account for the higher number of protein–protein interactions in dosage-insensitive CNVs than in dosage-sensitive CNVs. Dosage-sensitive CNVs that are upregulated and downregulated coincide with copy-number increases and decreases. Our results help clarify the relation between CNV dosage and gene expression in the D. melanogaster genome
Population Genomic Inferences from Sparse High-Throughput Sequencing of Two Populations of Drosophila melanogaster
Short-read sequencing techniques provide the opportunity to capture genome-wide sequence data in a single experiment. A current challenge is to identify questions that shallow-depth genomic data can address successfully and to develop corresponding analytical methods that are statistically sound. Here, we apply the Roche/454 platform to survey natural variation in strains of Drosophila melanogaster from an African (n = 3) and a North American (n = 6) population. Reads were aligned to the reference D. melanogaster genomic assembly, single nucleotide polymorphisms were identified, and nucleotide variation was quantified genome wide. Simulations and empirical results suggest that nucleotide diversity can be accurately estimated from sparse data with as little as 0.2× coverage per line. The unbiased genomic sampling provided by random short-read sequencing also allows insight into distributions of transposable elements and copy number polymorphisms found within populations and demonstrates that short-read sequencing methods provide an efficient means to quantify variation in genome organization and content. Continued development of methods for statistical inference of shallow-depth genome-wide sequencing data will allow such sparse, partial data sets to become the norm in the emerging field of population genomics
Ecological Niche Dimensionality and the Evolutionary Diversification of Stick Insects
The degree of phenotypic divergence and reproductive isolation between taxon pairs can vary quantitatively, and often increases as evolutionary divergence proceeds through various stages, from polymorphism to population differentiation, ecotype and race formation, speciation, and post-speciational divergence. Although divergent natural selection promotes divergence, it does not always result in strong differentiation. For example, divergent selection can fail to complete speciation, and distinct species pairs sometimes collapse (‘speciation in reverse’). Widely-discussed explanations for this variability concern genetic architecture, and the geographic arrangement of populations. A less-explored possibility is that the degree of phenotypic and reproductive divergence between taxon pairs is positively related to the number of ecological niche dimensions (i.e., traits) subject to divergent selection. Some data supporting this idea stem from laboratory experimental evolution studies using Drosophila, but tests from nature are lacking. Here we report results from manipulative field experiments in natural populations of herbivorous Timema stick insects that are consistent with this ‘niche dimensionality’ hypothesis. In such insects, divergent selection between host plants might occur for cryptic colouration (camouflage to evade visual predation), physiology (to detoxify plant chemicals), or both of these niche dimensions. We show that divergent selection on the single niche dimension of cryptic colouration can result in ecotype formation and intermediate levels of phenotypic and reproductive divergence between populations feeding on different hosts. However, greater divergence between a species pair involved divergent selection on both niche dimensions. Although further replication of the trends reported here is required, the results suggest that dimensionality of selection may complement genetic and geographic explanations for the degree of diversification in nature
Data from: A recombination suppressor contributes to ecological speciation in Ostrinia moths
Despite unparalleled access to species’ genomes in our post-genomic age, we often lack adequate biological explanations for a major hallmark of the speciation process—genetic divergence. In the presence of gene flow, chromosomal rearrangements such as inversions are thought to promote divergence and facilitate speciation by suppressing recombination. Using a combination of genetic crosses, phenotyping of a trait underlying ecological isolation, and population genetic analysis of wild populations, we set out to determine whether evidence supports a role for recombination suppressors during speciation between the Z and E strains of European corn borer moth (Ostrinia nubilalis). Our results are consistent with the presence of an inversion that has contributed to accumulation of ecologically adaptive alleles and genetic differentiation across roughly 20% of the Ostrinia sex chromosome (~4 Mb). Patterns in Ostrinia suggest that chromosomal divergence may involve two separate phases—one driving its transient origin through local adaptation and one determining its stable persistence through differential introgression. As the evolutionary rate of rearrangements in lepidopteran genomes appears to be one of the fastest among eukaryotes, structural mutations may have had a disproportionate role during adaptive divergence and speciation in Ostrinia and in other moths and butterflies
Using RNA sequencing to characterize female reproductive genes between
Abstract Background: Reproductive proteins often evolve rapidly and are thought to be subject to strong sexual selection, and thus may play a key role in reproductive isolation and species divergence. However, our knowledge of reproductive proteins has been largely limited to males and model organisms with sequenced genomes. With advances in sequencing technology, Lepidoptera are emerging models for studies of sexual selection and speciation. By profiling the transcriptomes of the bursa copulatrix and bursal gland from females of two incipient species of moth, we characterize reproductive genes expressed in the primary reproductive tissues of female Lepidoptera and identify candidate genes contributing to a one-way gametic incompatibility between Z and E strains of the European corn borer (Ostrinia nubilalis). Results: Using RNA sequencing we identified transcripts from~37,000 and~36,000 loci that were expressed in the bursa copulatrix or the bursal gland respectively. Of bursa copulatrix genes, 8% were significantly differentially expressed compared to the female thorax, and those that were up-regulated or specific to the bursa copulatrix showed functional biases toward muscle activity and/or organization. In the bursal gland, 9% of genes were differentially expressed compared to the thorax, with many showing reproduction or gamete production functions. Of up-regulated bursal gland genes, 46% contained a transmembrane region and 16% possessed secretion signal peptides. Divergently expressed genes in the bursa copulatrix were exclusively biased toward protease-like functions and 51 proteases or protease inhibitors were divergently expressed overall. Conclusions: This is the first comprehensive characterization of female reproductive genes in any lepidopteran system. The transcriptome of the bursa copulatrix supports its role as a muscular sac that is the primary site for disruption of the male ejaculate. We find that the bursal gland acts as a reproductive secretory body that might also interact with male ejaculate. In addition, differential expression of proteases between strains supports a potential role for these tissues in contributing to reproductive isolation. Our study provides new insight into how male ejaculate is processed by female Lepidoptera, and paves the way for future work on interactions between post-mating sexual selection and speciation
Non-Pleiotropic Coupling of Daily and Seasonal Temporal Isolation in the European Corn Borer
Speciation often involves the coupling of multiple isolating barriers to produce reproductive isolation, but how coupling is generated among different premating barriers is unknown. We measure the degree of coupling between the daily mating time and seasonal mating time between strains of European corn borer (Ostrinia nubilalis) and evaluate the hypothesis that the coupling of different forms of allochrony is due to a shared genetic architecture, involving genes with pleiotropic effects on both timing phenotypes. We measure differences in gene expression at peak mating times and compare these genes to previously identified candidates that are associated with changes in seasonal mating time between the corn borer strains. We find that the E strain, which mates earlier in the season, also mates 2.7 h earlier in the night than the Z strain. Earlier daily mating is correlated with the differences in expression of the circadian clock genes cycle, slimb, and vrille. However, different circadian clock genes associate with daily and seasonal timing, suggesting that the coupling of timing traits is maintained by natural selection rather than pleiotropy. Juvenile hormone gene expression was associated with both types of timing, suggesting that circadian genes activate common downstream modules that may impose constraint on future evolution of these traits