214 research outputs found
Enhancement of electroporation facilitated immunogene therapy via T-reg depletion
Regulatory T cells (T-regs) can negatively impact tumor antigen-specific immune responses after infiltration into tumor tissue. However, depletion of T-regs can facilitate enhanced anti-tumor responses, thus augmenting the potential for immunotherapies. Here we focus on treating a highly aggressive form of cancer using a murine melanoma model with a poor prognosis. We utilize a combination of T-reg depletion and immunotherapy plasmid DNA delivered into the B16F10 melanoma tumor model via electroporation. Plasmids encoding murine granulocyte macrophage colony-stimulating factor and human B71 were transfected with electroporation into the tumor and transient elimination of T-regs was achieved with CD25-depleting antibodies (PC61). The combinational treatment effectively depleted T-regs compared to the untreated tumor and significantly reduced lung metastases. The combination treatment was not effective in increasing the survival, but only effective in suppression of metastases. These results indicate the potential for combining T-reg depletion with immunotherapy-based gene electrotransfer to decrease systemic metastasis and potentially enhance survival
CHILES: HI morphology and galaxy environment at z=0.12 and z=0.17
We present a study of 16 HI-detected galaxies found in 178 hours of
observations from Epoch 1 of the COSMOS HI Large Extragalactic Survey (CHILES).
We focus on two redshift ranges between 0.108 <= z <= 0.127 and 0.162 <= z <=
0.183 which are among the worst affected by radio frequency interference (RFI).
While this represents only 10% of the total frequency coverage and 18% of the
total expected time on source compared to what will be the full CHILES survey,
we demonstrate that our data reduction pipeline recovers high quality data even
in regions severely impacted by RFI. We report on our in-depth testing of an
automated spectral line source finder to produce HI total intensity maps which
we present side-by-side with significance maps to evaluate the reliability of
the morphology recovered by the source finder. We recommend that this become a
common place manner of presenting data from upcoming HI surveys of resolved
objects. We use the COSMOS 20k group catalogue, and we extract filamentary
structure using the topological DisPerSE algorithm to evaluate the \hi\
morphology in the context of both local and large-scale environments and we
discuss the shortcomings of both methods. Many of the detections show disturbed
HI morphologies suggesting they have undergone a recent interaction which is
not evident from deep optical imaging alone. Overall, the sample showcases the
broad range of ways in which galaxies interact with their environment. This is
a first look at the population of galaxies and their local and large-scale
environments observed in HI by CHILES at redshifts beyond the z=0.1 Universe.Comment: 23 pages, 12 figures, 1 interactive 3D figure, accepted to MNRA
An Overview of the 2014 ALMA Long Baseline Campaign
A major goal of the Atacama Large Millimeter/submillimeter Array (ALMA) is to
make accurate images with resolutions of tens of milliarcseconds, which at
submillimeter (submm) wavelengths requires baselines up to ~15 km. To develop
and test this capability, a Long Baseline Campaign (LBC) was carried out from
September to late November 2014, culminating in end-to-end observations,
calibrations, and imaging of selected Science Verification (SV) targets. This
paper presents an overview of the campaign and its main results, including an
investigation of the short-term coherence properties and systematic phase
errors over the long baselines at the ALMA site, a summary of the SV targets
and observations, and recommendations for science observing strategies at long
baselines. Deep ALMA images of the quasar 3C138 at 97 and 241 GHz are also
compared to VLA 43 GHz results, demonstrating an agreement at a level of a few
percent. As a result of the extensive program of LBC testing, the highly
successful SV imaging at long baselines achieved angular resolutions as fine as
19 mas at ~350 GHz. Observing with ALMA on baselines of up to 15 km is now
possible, and opens up new parameter space for submm astronomy.Comment: 11 pages, 7 figures, 2 tables; accepted for publication in the
Astrophysical Journal Letters; this version with small changes to
affiliation
Star Formation and Dynamics in the Galactic Centre
The centre of our Galaxy is one of the most studied and yet enigmatic places
in the Universe. At a distance of about 8 kpc from our Sun, the Galactic centre
(GC) is the ideal environment to study the extreme processes that take place in
the vicinity of a supermassive black hole (SMBH). Despite the hostile
environment, several tens of early-type stars populate the central parsec of
our Galaxy. A fraction of them lie in a thin ring with mild eccentricity and
inner radius ~0.04 pc, while the S-stars, i.e. the ~30 stars closest to the
SMBH (<0.04 pc), have randomly oriented and highly eccentric orbits. The
formation of such early-type stars has been a puzzle for a long time: molecular
clouds should be tidally disrupted by the SMBH before they can fragment into
stars. We review the main scenarios proposed to explain the formation and the
dynamical evolution of the early-type stars in the GC. In particular, we
discuss the most popular in situ scenarios (accretion disc fragmentation and
molecular cloud disruption) and migration scenarios (star cluster inspiral and
Hills mechanism). We focus on the most pressing challenges that must be faced
to shed light on the process of star formation in the vicinity of a SMBH.Comment: 68 pages, 35 figures; invited review chapter, to be published in
expanded form in Haardt, F., Gorini, V., Moschella, U. and Treves, A.,
'Astrophysical Black Holes'. Lecture Notes in Physics. Springer 201
Four-Year Treatment Outcomes of Adult Patients Enrolled in Mozambique's Rapidly Expanding Antiretroviral Therapy Program
BACKGROUND: In Mozambique during 2004-2007 numbers of adult patients (≥15 years old) enrolled on antiretroviral therapy (ART) increased about 16-fold, from <5,000 to 79,500. All ART patients were eligible for co-trimoxazole. ART program outcomes, and determinants of outcomes, have not yet been reported. METHODOLOGY/PRINCIPAL FINDINGS: In a retrospective cohort study, we investigated rates of mortality, attrition (death, loss to follow-up, or treatment cessation), immunologic treatment failure, and regimen-switch, as well as determinants of selected outcomes, among a nationally representative sample of 2,596 adults initiating ART during 2004-2007. At ART initiation, median age of patients was 34 and 62% were female. Malnutrition and advanced disease were common; 18% of patients weighed <45 kilograms, and 15% were WHO stage IV. Median baseline CD4(+) T-cell count was 153/µL and was lower for males than females (139/µL vs. 159/µL, p<0.01). Stavudine, lamivudine, and nevirapine or efavirenz were prescribed to 88% of patients; only 31% were prescribed co-trimoxazole. Mortality and attrition rates were 3.4 deaths and 19.8 attritions per 100 patient-years overall, and 12.9 deaths and 57.2 attritions per 100 patient-years in the first 90 days. Predictors of attrition included male sex [adjusted hazard ratio (AHR) 1.5; 95% confidence interval (CI), 1.3-1.8], weight <45 kg (AHR 2.1; 95% CI, 1.6-2.9, reference group >60 kg), WHO stage IV (AHR 1.7; 95% CI, 1.3-2.4, reference group WHO stage I/II), lack of co-trimoxazole prescription (AHR 1.4; 95% CI, 1.0-1.8), and later calendar year of ART initiation (AHR 1.5; 95% CI, 1.2-1.8). Rates of immunologic treatment failure and regimen-switch were 14.0 and 0.6 events per 100-patient years, respectively. CONCLUSIONS: ART initiation at earlier disease stages and scale-up of co-trimoxazole among ART patients could improve outcomes. Research to determine reasons for low regimen-switch rates and increasing rates of attrition during program expansion is needed
Whole-genome sequencing reveals host factors underlying critical COVID-19
Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
Open Data from the Third Observing Run of LIGO, Virgo, KAGRA, and GEO
The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in 2019 April and lasting six months, O3b starting in 2019 November and lasting five months, and O3GK starting in 2020 April and lasting two weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main data set, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages
Search for Eccentric Black Hole Coalescences during the Third Observing Run of LIGO and Virgo
Despite the growing number of confident binary black hole coalescences
observed through gravitational waves so far, the astrophysical origin of these
binaries remains uncertain. Orbital eccentricity is one of the clearest tracers
of binary formation channels. Identifying binary eccentricity, however, remains
challenging due to the limited availability of gravitational waveforms that
include effects of eccentricity. Here, we present observational results for a
waveform-independent search sensitive to eccentric black hole coalescences,
covering the third observing run (O3) of the LIGO and Virgo detectors. We
identified no new high-significance candidates beyond those that were already
identified with searches focusing on quasi-circular binaries. We determine the
sensitivity of our search to high-mass (total mass ) binaries
covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to
compare model predictions to search results. Assuming all detections are indeed
quasi-circular, for our fiducial population model, we place an upper limit for
the merger rate density of high-mass binaries with eccentricities at Gpc yr at 90\% confidence level.Comment: 24 pages, 5 figure
- …