257 research outputs found
Brewing of filter coffee
We report progress on mathematical modelling of coffee grounds in a drip filter coffee machine. The report focuses on the evolution of the shape of the bed of coffee grounds during extraction with some work also carried out on the chemistry of extraction. This work was sponsored by Philips who are interested in understanding an observed correlation between the final shape of the coffee grounds and the quality of the coffee. We used experimental data gathered by Philips and ourselves to identify regimes in the coffee brewing process and relevant regions of parameter space. Our work makes it clear that a number of separate processes define the shape of the coffee bed depending on the values of the parameters involved e.g. the size of the grains and the speed of fluid flow during extraction. We began work on constructing mathematical models of the redistribution of the coffee grounds specialised to each region and on a model of extraction. A variety of analytic and numerical tools were used. Furthermore our research has progressed far enough to allow us to begin to exploit connections between this problem and other areas of science, in particular the areas of sedimentology and geomorphology, where the processes we have observed in coffee brewing have been studied
The Neuroscience Information Framework: A Data and Knowledge Environment for Neuroscience
With support from the Institutes and Centers forming the NIH Blueprint for Neuroscience Research, we have designed and implemented a new initiative for integrating access to and use of Web-based neuroscience resources: the Neuroscience Information Framework. The Framework arises from the expressed need of the neuroscience community for neuroinformatic tools and resources to aid scientific inquiry, builds upon prior development of neuroinformatics by the Human Brain Project and others, and directly derives from the Society for Neuroscience’s Neuroscience Database Gateway. Partnered with the Society, its Neuroinformatics Committee, and volunteer consultant-collaborators, our multi-site consortium has developed: (1) a comprehensive, dynamic, inventory of Web-accessible neuroscience resources, (2) an extended and integrated terminology describing resources and contents, and (3) a framework accepting and aiding concept-based queries. Evolving instantiations of the Framework may be viewed at http://nif.nih.gov, http://neurogateway.org, and other sites as they come on line
A Comparative Computer Simulation of Dendritic Morphology
Computational modeling of neuronal morphology is a powerful tool for understanding developmental processes and structure-function relationships. We present a multifaceted approach based on stochastic sampling of morphological measures from digital reconstructions of real cells. We examined how dendritic elongation, branching, and taper are controlled by three morphometric determinants: Branch Order, Radius, and Path Distance from the soma. Virtual dendrites were simulated starting from 3,715 neuronal trees reconstructed in 16 different laboratories, including morphological classes as diverse as spinal motoneurons and dentate granule cells. Several emergent morphometrics were used to compare real and virtual trees. Relating model parameters to Branch Order best constrained the number of terminations for most morphological classes, except pyramidal cell apical trees, which were better described by a dependence on Path Distance. In contrast, bifurcation asymmetry was best constrained by Radius for apical, but Path Distance for basal trees. All determinants showed similar performance in capturing total surface area, while surface area asymmetry was best determined by Path Distance. Grouping by other characteristics, such as size, asymmetry, arborizations, or animal species, showed smaller differences than observed between apical and basal, pointing to the biological importance of this separation. Hybrid models using combinations of the determinants confirmed these trends and allowed a detailed characterization of morphological relations. The differential findings between morphological groups suggest different underlying developmental mechanisms. By comparing the effects of several morphometric determinants on the simulation of different neuronal classes, this approach sheds light on possible growth mechanism variations responsible for the observed neuronal diversity
Improving Project Logistics by using IoT
This Bachelor´s thesis is made on behalf of Wärtsilä Energy Solutions, Project Logistics & Transport Management department whose main task is to coordinate and ensure that materials and products are transported to the right place and on time in Project Logistics.
This thesis examines how you could improve Wärtsilä´s Project Logistics by using Internet of Things. By developing IoT, there has been an increased chance to get more information about transports than before and Wärtsilä is currently looking for new solutions to use that could improve their current logistics system. The purpose of this thesis is to review new, and used, solutions on the market, and then see what could work in practice at Wärtsilä.
Material to this thesis are gathered from books, web pages and articles that reviewed interesting IoT solutions and which also gave examples on different solutions that are used by other companies in the same business.
The Result is two different methods that could improve Wärtsilä´s Project Logistics in different occasions. These results are intended to give tips on how IoT could improve the department´s ways of coordinating and check transports and logistics within a project.Detta examensarbete är gjort i uppdrag av Wärtsilä Energy Solutions, Project logistics & Transport Management avdelningen vars huvuduppgift är att koordinera och se till att material och produkter transporteras till rätt plats i rätt tid inom projekt logistiken.
Examensarbetet behandlar hur man kunde förbättra Wärtsiläs projekt logistik genom att använda Internet of Things. Genom att IoT har utvecklats har det uppstått möjligheter att få fram mer information om transporter än tidigare och Wärtsilä söker för tillfället nya lösningar som kunde användas för att förbättra deras nuvarande logistiksystem. Syftet med arbetet är att gå igenom nya, men även redan befintliga, lösningar som används på dagens marknad - för att sedan se vad som kunde fungera i praktiken hos Wärtsilä.
Material till arbetet är samlat från böcker, webbsidor och artiklar som gick igenom intressanta IoT lösningar och som också gav exempel på hur olika system fungerar och används av andra företag inom samma bransch.
Slutresultatet blev två olika metoder som kunde förbättra Wärtsiläs projekt logistik vid olika tillfällen. Dessa resultat är tänkta för att ge tips på hur IoT kunde förbättra avdelningens sätt hur man koordinerar och granskar transporter och logistiken inom ett projekt
Rule-Selection and Action-Selection have a Shared Neuroanatomical Basis in the Human Prefrontal and Parietal Cortex
The human capacity for voluntary action is one of the major contributors to our success as a species. In addition to choosing actions themselves, we can also voluntarily choose behavioral codes or sets of rules that can guide future responses to events. Such rules have been proposed to be superordinate to actions in a cognitive hierarchy and mediated by distinct brain regions. We used event-related functional magnetic resonance imaging to study novel tasks of rule-based and voluntary action. We show that the voluntary selection of rules to govern future responses to events is associated with activation of similar regions of prefrontal and parietal cortex as the voluntary selection of an action itself. The results are discussed in terms of hierarchical models and the adaptive coding potential of prefrontal neurons and their contribution to a global workspace for nonautomatic tasks. These tasks include the choices we make about our behavior
Rethinking Equality in the Global Society
The future of affirmative action, especially in the area of American higher education, has been called into question by the 1996 decision of the U.S. Court of Appeals for the Fifth Circuit in Hopwood v. State of Texas, requiring race-blind admission to state universities in Texas, and the passage of Proposition 209 in California. The seemingly endless American debate on this issue almost entirely has ignored the fact that other countries faced with comparable problems of remedying the effects of past discrimination have developed programs and acquired experience from which Americans might learn. Further, the legal debate has not been adequately informed by the social science disciplines. This conference was intended to expand discussion at a critical moment by introducing these missing perspectives
The somatic autosomal mutation matrix in cancer genomes
DNA damage in somatic cells originates from both environmental and endogenous sources, giving rise to mutations through multiple mechanisms. When these mutations affect the function of critical genes, cancer may ensue. Although identifying genomic subsets of mutated genes may inform therapeutic options, a systematic survey of tumor mutational spectra is required to improve our understanding of the underlying mechanisms of mutagenesis involved in cancer etiology. Recent studies have presented genome-wide sets of somatic mutations as a 96-element vector, a procedure that only captures the immediate neighbors of the mutated nucleotide. Herein, we present a 32 × 12 mutation matrix that captures the nucleotide pattern two nucleotides upstream and downstream of the mutation. A somatic autosomal mutation matrix (SAMM) was constructed from tumor-specific mutations derived from each of 909 individual cancer genomes harboring a total of 10,681,843 single-base substitutions. In addition, mechanistic template mutation matrices (MTMMs) representing oxidative DNA damage, ultraviolet-induced DNA damage, 5mCpG deamination, and APOBEC-mediated cytosine mutation, are presented. MTMMs were mapped to the individual tumor SAMMs to determine the maximum contribution of each mutational mechanism to the overall mutation pattern. A Manhattan distance across all SAMM elements between any two tumor genomes was used to determine their relative distance. Employing this metric, 89.5 % of all tumor genomes were found to have a nearest neighbor from the same tissue of origin. When a distance-dependent 6-nearest neighbor classifier was used, 86.9 % of all SAMMs were assigned to the correct tissue of origin. Thus, although tumors from different tissues may have similar mutation patterns, their SAMMs often display signatures that are characteristic of specific tissues
An analysis of dormancy, ABA responsiveness, after-ripening and pre-harvest sprouting in hexaploid wheat (Triticum aestivum L.) caryopses
Embryo and caryopsis dormancy, abscisic acid (ABA) responsiveness, after-ripening (AR), and the disorder pre-harvest sprouting (PHS) were investigated in six genetically related wheat varieties previously characterized as resistant, intermediate, or susceptible to PHS. Timing of caryopsis AR differed between varieties; AR occurred before harvest ripeness in the most PHS-susceptible, whereas AR was slowest in the most PHS-resistant. Whole caryopses of all varieties showed little ABA-responsiveness during AR; PHS-susceptible varieties were responsive at the beginning of the AR period whereas PHS-resistant showed some responsiveness throughout. Isolated embryos showed relatively little dormancy during grain-filling and most varieties exhibited a window of decreased ABA-responsiveness around the period of maximum dry matter accumulation (physiological maturity). Susceptibility to PHS was assessed by overhead misting of either isolated ears or whole plants during AR; varieties were clearly distinguished using both methods. These analyses allowed an investigation of the interactions between the different components of seed development, compartments, and environment for the six varieties. There was no direct relationship between speed of caryopsis AR and embryo dormancy or ABA-responsiveness during seed maturation. However, the velocity of AR of a variety was closely associated with the degree of susceptibility to PHS during AR suggesting that these characters are developmentally linked. Investigation of genetic components of AR may therefore aid breeding approaches to reduce susceptibility to PHS
Guanine Holes Are Prominent Targets for Mutation in Cancer and Inherited Disease
Albino Bacolla, Guliang Wang, Aklank Jain, Karen M. Vasquez, Division of Pharmacology and Toxicology, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, Texas, United States of AmericaAlbino Bacolla, Nuri A. Temiz, Ming Yi, Joseph Ivanic, Regina Z. Cer, Duncan E. Donohue, Uma S. Mudunuri, Natalia Volfovsky, Brian T. Luke, Robert M., Stephens, Jack R. Collins, Advanced Biomedical Computing Center, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of AmericaEdward V. Ball, David N. Cooper, Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, United KingdomSingle base substitutions constitute the most frequent type of human gene mutation and are a leading cause of cancer and inherited disease. These alterations occur non-randomly in DNA, being strongly influenced by the local nucleotide sequence context. However, the molecular mechanisms underlying such sequence context-dependent mutagenesis are not fully understood. Using bioinformatics, computational and molecular modeling analyses, we have determined the frequencies of mutation at G•C bp in the context of all 64 5′-NGNN-3′ motifs that contain the mutation at the second position. Twenty-four datasets were employed, comprising >530,000 somatic single base substitutions from 21 cancer genomes, >77,000 germline single-base substitutions causing or associated with human inherited disease and 16.7 million benign germline single-nucleotide variants. In several cancer types, the number of mutated motifs correlated both with the free energies of base stacking and the energies required for abstracting an electron from the target guanines (ionization potentials). Similar correlations were also evident for the pathological missense and nonsense germline mutations, but only when the target guanines were located on the non-transcribed DNA strand. Likewise, pathogenic splicing mutations predominantly affected positions in which a purine was located on the non-transcribed DNA strand. Novel candidate driver mutations and tissue-specific mutational patterns were also identified in the cancer datasets. We conclude that electron transfer reactions within the DNA molecule contribute to sequence context-dependent mutagenesis, involving both somatic driver and passenger mutations in cancer, as well as germline alterations causing or associated with inherited disease.This work was supported by grants from the NIH (CA097175 and CA093729) to KMV, NCI/NIH contract HHSN261200800001E to AB and the Frederick National Laboratory for Cancer Research, and CBIIT/caBIG ISRCE yellow task #09-260 to the Frederick National Laboratory for Cancer Research. DNC and EVB received financial support from BIOBASE GmbH through a license agreement (for HGMD) with Cardiff University. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.PharmacyEmail: [email protected]
The Role of Methylation in the Intrinsic Dynamics of B- and Z-DNA
Methylation of cytosine at the 5-carbon position (5mC) is observed in both prokaryotes and eukaryotes. In humans, DNA methylation at CpG sites plays an important role in gene regulation and has been implicated in development, gene silencing, and cancer. In addition, the CpG dinucleotide is a known hot spot for pathologic mutations genome-wide. CpG tracts may adopt left-handed Z-DNA conformations, which have also been implicated in gene regulation and genomic instability. Methylation facilitates this B-Z transition but the underlying mechanism remains unclear. Herein, four structural models of the dinucleotide d(GC)5 repeat sequence in B-, methylated B-, Z-, and methylated Z-DNA forms were constructed and an aggregate 100 nanoseconds of molecular dynamics simulations in explicit solvent under physiological conditions was performed for each model. Both unmethylated and methylated B-DNA were found to be more flexible than Z-DNA. However, methylation significantly destabilized the BII, relative to the BI, state through the Gp5mC steps. In addition, methylation decreased the free energy difference between B- and Z-DNA. Comparisons of α/γ backbone torsional angles showed that torsional states changed marginally upon methylation for B-DNA, and Z-DNA. Methylation-induced conformational changes and lower energy differences may contribute to the transition to Z-DNA by methylated, over unmethylated, B-DNA and may be a contributing factor to biological function
- …