82 research outputs found

    Prosaposin is a regulator of progranulin levels and oligomerization

    Get PDF
    Progranulin (GRN) loss-of-function mutations leading to progranulin protein (PGRN) haploinsufficiency are prevalent genetic causes of frontotemporal dementia. Reports also indicated PGRN-mediated neuroprotection in models of Alzheimer’s and Parkinson’s disease; thus, increasing PGRN levels is a promising therapeutic for multiple disorders. To uncover novel PGRN regulators, we linked whole-genome sequence data from 920 individuals with plasma PGRN levels and identified the prosaposin (PSAP) locus as a new locus significantly associated with plasma PGRN levels. Here we show that both PSAP reduction and overexpression lead to significantly elevated extracellular PGRN levels. Intriguingly, PSAP knockdown increases PGRN monomers, whereas PSAP overexpression increases PGRN oligomers, partly through a protein–protein interaction. PSAP-induced changes in PGRN levels and oligomerization replicate in human-derived fibroblasts obtained from a GRN mutation carrier, further supporting PSAP as a potential PGRN-related therapeutic target. Future studies should focus on addressing the relevance and cellular mechanism by which PGRN oligomeric species provide neuroprotection

    Minimally invasive postmortem intestinal tissue sampling in malnourished and acutely ill children is feasible and informative

    Get PDF
    BACKGROUND: Intestinal disorders such as environmental enteric dysfunction (EED) are prevalent in low- and middle-income countries (LMICs) and important contributors to childhood undernutrition and mortality. Autopsies are rarely performed in LMICs but minimally invasive tissue sampling is increasingly deployed as a more feasible and acceptable procedure, although protocols have been devoid of intestinal sampling to date. We sought to determine (1) the feasibility of postmortem intestinal sampling, (2) whether autolysis precludes enteric biopsies\u27 utility, and (3) histopathologic features among children who died during hospitalization with acute illness or undernutrition. METHODS: Transabdominal needle and endoscopic forceps upper and lower intestinal sampling were conducted among children aged 1 week to 59 months who died while hospitalized in Blantyre, Malawi. Autolysis ratings were determined for each hematoxylin and eosin slide, and upper and lower intestinal scoring systems were adapted to assess histopathologic features and their severity. RESULTS: Endoscopic and transabdominal sampling procedures were attempted in 28 and 14 cases, respectively, with \u3e90% success obtaining targeted tissue. Varying degrees of autolysis were present in all samples and precluded histopathologic scoring of 6% of 122 biopsies. Greater autolysis in duodenal samples was seen with longer postmortem interval (Beta = 0.06, 95% confidence interval, 0.02-0.11). Histopathologic features identified included duodenal Paneth and goblet cell depletion. Acute inflammation was absent but chronic inflammation was prevalent in both upper and lower enteric samples. Severe chronic rectal inflammation was identified in children as young as 5.5 weeks. CONCLUSIONS: Minimally invasive postmortem intestinal sampling is feasible and identifies histopathology that can inform mortality contributors

    Minimally invasive postmortem intestinal tissue sampling in malnourished and acutely ill children is feasible and informative

    Get PDF
    BACKGROUND: Intestinal disorders such as environmental enteric dysfunction (EED) are prevalent in low- and middle-income countries (LMICs) and important contributors to childhood undernutrition and mortality. Autopsies are rarely performed in LMICs but minimally invasive tissue sampling is increasingly deployed as a more feasible and acceptable procedure, although protocols have been devoid of intestinal sampling to date. We sought to determine (1) the feasibility of postmortem intestinal sampling, (2) whether autolysis precludes enteric biopsies\u27 utility, and (3) histopathologic features among children who died during hospitalization with acute illness or undernutrition. METHODS: Transabdominal needle and endoscopic forceps upper and lower intestinal sampling were conducted among children aged 1 week to 59 months who died while hospitalized in Blantyre, Malawi. Autolysis ratings were determined for each hematoxylin and eosin slide, and upper and lower intestinal scoring systems were adapted to assess histopathologic features and their severity. RESULTS: Endoscopic and transabdominal sampling procedures were attempted in 28 and 14 cases, respectively, with \u3e90% success obtaining targeted tissue. Varying degrees of autolysis were present in all samples and precluded histopathologic scoring of 6% of 122 biopsies. Greater autolysis in duodenal samples was seen with longer postmortem interval (Beta = 0.06, 95% confidence interval, 0.02-0.11). Histopathologic features identified included duodenal Paneth and goblet cell depletion. Acute inflammation was absent but chronic inflammation was prevalent in both upper and lower enteric samples. Severe chronic rectal inflammation was identified in children as young as 5.5 weeks. CONCLUSIONS: Minimally invasive postmortem intestinal sampling is feasible and identifies histopathology that can inform mortality contributors

    Deep Sequencing of B Cell Receptor Repertoires From COVID-19 Patients Reveals Strong Convergent Immune Signatures.

    Get PDF
    Deep sequencing of B cell receptor (BCR) heavy chains from a cohort of 31 COVID-19 patients from the UK reveals a stereotypical naive immune response to SARS-CoV-2 which is consistent across patients. Clonal expansion of the B cell population is also observed and may be the result of memory bystander effects. There was a strong convergent sequence signature across patients, and we identified 1,254 clonotypes convergent between at least four of the COVID-19 patients, but not present in healthy controls or individuals following seasonal influenza vaccination. A subset of the convergent clonotypes were homologous to known SARS and SARS-CoV-2 spike protein neutralizing antibodies. Convergence was also demonstrated across wide geographies by comparison of data sets between patients from UK, USA, and China, further validating the disease association and consistency of the stereotypical immune response even at the sequence level. These convergent clonotypes provide a resource to identify potential therapeutic and prophylactic antibodies and demonstrate the potential of BCR profiling as a tool to help understand patient responses

    The Role of Interleukin-1 and Interleukin-18 in Pro-Inflammatory and Anti-Viral Responses to Rhinovirus in Primary Bronchial Epithelial Cells

    Get PDF
    Human Rhinovirus (HRV) is associated with acute exacerbations of chronic respiratory disease. In healthy individuals, innate viral recognition pathways trigger release of molecules with direct anti-viral activities and pro-inflammatory mediators which recruit immune cells to support viral clearance. Interleukin-1alpha (IL-1α), interleukin-1beta (IL-1β) and interleukin-18 (IL-18) have critical roles in the establishment of neutrophilic inflammation, which is commonly seen in airways viral infection and thought to be detrimental in respiratory disease. We therefore investigated the roles of these molecules in HRV infection of primary human epithelial cells. We found that all three cytokines were released from infected epithelia. Release of these cytokines was not dependent on cell death, and only IL-1β and IL-18 release was dependent on caspase-1 catalytic activity. Blockade of IL-1 but not IL-18 signaling inhibited up-regulation of pro-inflammatory mediators and neutrophil chemoattractants but had no effect on virus induced production of interferons and interferon-inducible genes, measured at both mRNA and protein level. Similar level of virus mRNA was detected with and without IL-1RI blockade. Hence IL-1 signaling, potentially involving both IL-1β and IL-1α, downstream of viral recognition plays a key role in induction of pro-inflammatory signals and potentially in recruitment and activation of immune cells in response to viral infection instigated by the epithelial cells, whilst not participating in direct anti-viral responses

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Neutrophil GM-CSF receptor dynamics in acute lung injury.

    Get PDF
    GM-CSF is important in regulating acute, persistent neutrophilic inflammation in certain settings, including lung injury. Ligand binding induces rapid internalization of the GM-CSF receptor (GM-CSFRα) complex, a process essential for signaling. Whereas GM-CSF controls many aspects of neutrophil biology, regulation of GM-CSFRα expression is poorly understood, particularly the role of GM-CSFRα in ligand clearance and whether signaling is sustained despite major down-regulation of GM-CSFRα surface expression. We established a quantitative assay of GM-CSFRα surface expression and used this, together with selective anti-GM-CSFR antibodies, to define GM-CSFRα kinetics in human neutrophils, and in murine blood and alveolar neutrophils in a lung injury model. Despite rapid sustained ligand-induced GM-CSFRα loss from the neutrophil surface, which persisted even following ligand removal, pro-survival effects of GM-CSF required ongoing ligand-receptor interaction. Neutrophils recruited to the lungs following LPS challenge showed initially high mGM-CSFRα expression, which along with mGM-CSFRβ declined over 24 hr; this was associated with a transient increase in bronchoalveolar lavage fluid (BALF) mGM-CSF concentration. Treating mice in an LPS challenge model with CAM-3003, an anti-mGM-CSFRα mAb, inhibited inflammatory cell influx into the lung and maintained the level of BALF mGM-CSF. Consistent with neutrophil consumption of GM-CSF, human neutrophils depleted exogenous GM-CSF, independent of protease activity. These data show that loss of membrane GM-CSFRα following GM-CSF exposure does not preclude sustained GM-CSF/GM-CSFRα signaling and that this receptor plays a key role in ligand clearance. Hence neutrophilic activation via GM-CSFR may play an important role in neutrophilic lung inflammation even in the absence of high GM-CSF levels or GM-CSFRα expression

    Proceedings of Patient Reported Outcome Measure’s (PROMs) Conference Oxford 2017: Advances in Patient Reported Outcomes Research

    Get PDF
    A33-Effects of Out-of-Pocket (OOP) Payments and Financial Distress on Quality of Life (QoL) of People with Parkinson’s (PwP) and their Carer

    RA-MAP, molecular immunological landscapes in early rheumatoid arthritis and healthy vaccine recipients

    Get PDF
    Rheumatoid arthritis (RA) is a chronic inflammatory disorder with poorly defined aetiology characterised by synovial inflammation with variable disease severity and drug responsiveness. To investigate the peripheral blood immune cell landscape of early, drug naive RA, we performed comprehensive clinical and molecular profiling of 267 RA patients and 52 healthy vaccine recipients for up to 18 months to establish a high quality sample biobank including plasma, serum, peripheral blood cells, urine, genomic DNA, RNA from whole blood, lymphocyte and monocyte subsets. We have performed extensive multi-omic immune phenotyping, including genomic, metabolomic, proteomic, transcriptomic and autoantibody profiling. We anticipate that these detailed clinical and molecular data will serve as a fundamental resource offering insights into immune-mediated disease pathogenesis, progression and therapeutic response, ultimately contributing to the development and application of targeted therapies for RA.</p
    corecore