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Prosaposin is a regulator of progranulin levels and
oligomerization
Alexandra M. Nicholson1, NiCole A. Finch1, Marcio Almeida2, Ralph B. Perkerson1, Marka van Blitterswijk1,

Aleksandra Wojtas1, Basar Cenik3, Sergio Rotondo4, Venette Inskeep5, Laura Almasy2, Thomas Dyer2,

Juan Peralta2, Goo Jun6, Andrew R. Wood7, Timothy M. Frayling7, Christian Fuchsberger8, Sharon Fowler9,

Tanya M. Teslovich8, Alisa K. Manning10, Satish Kumar2, Joanne Curran2, Donna Lehman11, Goncalo Abecasis8,

Ravindranath Duggirala2, Cyril Pottier1, Haaris A. Zahir1, Julia E. Crook1, Anna Karydas12, Laura Mitic12, Ying Sun5,

Dennis W. Dickson1, Guojun Bu1, Joachim Herz13, Gang Yu13, Bruce L. Miller12, Shawn Ferguson4,

Ronald C. Petersen14, Neill Graff-Radford15, John Blangero2 & Rosa Rademakers1

Progranulin (GRN) loss-of-function mutations leading to progranulin protein (PGRN)

haploinsufficiency are prevalent genetic causes of frontotemporal dementia. Reports also

indicated PGRN-mediated neuroprotection in models of Alzheimer’s and Parkinson’s disease;

thus, increasing PGRN levels is a promising therapeutic for multiple disorders. To uncover

novel PGRN regulators, we linked whole-genome sequence data from 920 individuals with

plasma PGRN levels and identified the prosaposin (PSAP) locus as a new locus significantly

associated with plasma PGRN levels. Here we show that both PSAP reduction and

overexpression lead to significantly elevated extracellular PGRN levels. Intriguingly,

PSAP knockdown increases PGRN monomers, whereas PSAP overexpression increases PGRN

oligomers, partly through a protein–protein interaction. PSAP-induced changes in PGRN levels

and oligomerization replicate in human-derived fibroblasts obtained from a GRN mutation

carrier, further supporting PSAP as a potential PGRN-related therapeutic target. Future

studies should focus on addressing the relevance and cellular mechanism by which PGRN

oligomeric species provide neuroprotection.
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T
he progranulin protein (PGRN) is a well-studied growth
factor widely expressed throughout the human body, with
notable expression levels in the bone marrow, immune

cells, epithelial cells and the nervous system1–3. PGRN is secreted
as a full-length glycoprotein comprised of 7.5 tandem repeats of a
10–12 cysteine-containing motif separated by interlinked spacer
regions, which can be proteolytically processed into mature
6 kDa granulins4,5. PGRN’s biological function is heterogenous,
including cell growth and survival, embryogenesis, inflammatory
responses and wound healing3,6–8. In the brain, PGRN seems to
be not only a factor in regulating neuroinflammation, but also a
regulator of neurite branching and outgrowth9–14.

In 2006, loss-of-function mutations in the PGRN gene (GRN)
were identified as a common cause of the neurodegenerative
disorder frontotemporal dementia (FTD)15,16. Most FTD-causing
GRN mutations are autosomal dominant and introduce a
premature stop codon through nonsense or frame-shift
mutations. Individuals with these mutations are PGRN
haploinsufficient due to decay of the mutant messenger RNA
(mRNA)15,16. Importantly, two patients were recently identified
with homozygous loss-of-function GRN mutations, which caused
adult onset neuronal ceroid lipofuscinosis17. Neuronal ceroid
lipofuscinosis is a lysosomal storage disorder that leads to an
accelerated accumulation of lipofuscin18, suggesting that adequate
levels of PGRN are necessary to maintain proper lysosomal
function.

Individuals with GRN mutations clinically present with varying
symptoms, leading to diagnosis other than FTD in some patients,
including Alzheimer’s disease, amyotrophic lateral sclerosis
and Parkinson’s disease19–21. While most GRN cases show
frontotemporal lobar degeneration with TDP-43 pathology at
autopsy, Alzheimer’s disease pathology has also been reported.
A common GRN variant, possibly leading to a partial reduction in
PGRN levels, has further been suggested as a genetic risk factor
for FTD and related neurodegenerative disorders, emphasizing
the important role of PGRN in the development of multiple
diseases22–27. In fact, increasing progranulin levels in both
cellular and animal models of FTLD, Parkinson’s disease and
Alzheimer’s disease has been reported as therapeutic13,28,29.
PGRN has also been shown to rescue neurite branching and
outgrowth in neurons lacking PGRN and protects neurons from
TDP-43-related neurotoxicity13,28. Thus, PGRN upregulation
could be a therapeutic approach for multiple neurodegenerative
disorders. In recent years, several research groups have conducted
studies to identify regulators of PGRN levels. Most notably,

the drug suberoylanilide hydroxamic acid was shown to increase
GRN transcription while alkalizing reagents and vacuolar
ATPase inhibitors increased PGRN levels in a post-translational
manner30,31. Nonetheless, no PGRN-modifying therapies are
currently available to patients with neurodegenerative disorders.

In this study, we used a genetic approach to identify novel
PGRN regulators. Using 920 Mexican-American, non-demented
individuals from 20 families, we performed the largest family-
based genome-wide association study (GWAS) to date using a
combination of whole-genome sequencing (WGS), imputation
and PGRN plasma measurements for those individuals. In
addition to confirming the chromosome 1p13.3 sortilin (SORT1)
locus, which was previously implicated in PGRN regulation, this
study led to the discovery of a genome-wide significant
association between plasma PGRN levels and single nucleotide
polymorphisms (SNPs) located on chromosome 10 at the
prosaposin (PSAP) and cadherin 23 (CDH23) locus. Follow-up
in vitro and in vivo studies identified PSAP as a novel regulator of
both PGRN levels and PGRN oligomerization. These findings
have important implications for the development of PGRN-
related therapeutics in FTD and other neurodegenerative
disorders.

Results
Plasma PGRN level is associated with a chromosome 10q locus.
To identify genetic loci that regulate plasma PGRN levels in
non-demented individuals, we conducted a GWAS using WGS
data obtained for 920 individuals from 20 Mexican-American
families for which plasma PGRN levels were measured by an
enzyme-linked immunosorbent assay (ELISA). More than half of
the individuals were whole-genome sequenced, while genotypes
of the other individuals were generated by imputation (Methods
section). The SNP most strongly associated with plasma PGRN
levels was rs646776 located near the PGRN receptor SORT1 on
chromosome 1 (linear regression; P¼ 8.11� 10� 42; Fig. 1a),
replicating our earlier findings which were based on a smaller
GWAS using roughly 300,000 SNPs (ref. 32). For this SNP, we
observed a 0.78 s.d. increment on the average plasma PGRN level
for each copy of the minor C-allele. Given the strong P values at
this locus, quantile-quantile (Q–Q) plots were generated with and
without the SORT1 region (Supplementary Fig. 1). We also
identified a second region spanning chromosome 10q21.1–22.2
(linear regression; top SNP rs1867977, P¼ 1.39� 10� 8) at the
prosaposin (PSAP) and cadherin 23 (CDH23) locus, which
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reached genome-wide significance (Fig. 1b). SNP rs1867977
showed a 0.28 s.d. decrement on the average plasma PGRN level
for each copy of the minor T-allele. To replicate the association
with this new locus, we genotyped two additional cohorts of
non-demented subjects for which plasma PGRN levels were
previously measured32,33. In replication cohort 1, rs1867977
was significantly associated with plasma PGRN levels (linear
regression; P¼ 0.007, n¼ 269), with each copy of the minor
T-allele predicted to decrease the average plasma PGRN level by
0.21 s.d. units (b¼ � 0.042). The rs1867977 minor T-allele also
correlated with a decrease of the average plasma PGRN level of
0.10 s.d. units per copy in replication cohort 2 (b¼ � 0.022);
however this change was not statistically significant (linear
regression; P¼ 0.101, n¼ 488).

rs7869 is a possible variant affecting PSAP levels. Of the genes
located within the novel chromosome 10 locus associated with
plasma PGRN levels, PSAP was previously implicated as a player
in PGRN-related biology due to its similar intra- and extracellular
localization, proteolytic processing, receptor binding and its role
in lysosomal function34. These similarities rendered PSAP the
most likely candidate PGRN regulator in this chromosomal
region. We therefore queried the WGS data to determine possible
PSAP functional variants which might affect its levels and/or
function. While no PSAP coding variants were identified,
SNP rs7869 (linear regression; P¼ 3.04� 10� 7; D0 ¼ 0.854 and
r2¼ 0.384 with rs1867977) resides within the PSAP 30

untranslated region (UTR) (genome.ucsc.edu). SNP rs7869 is a
common variant in the San Antonio Family Study (SAFS) cohort
(minor allele frequency¼ 48%) and part of a large linkage
disequilibrium block. Importantly, when we re-analysed the
GWAS conditioned upon the rs7869 genotypes, no residual
association was detected (Supplementary Fig. 2), supporting that
the observed association in this region is in fact driven by the
linkage disequilibrium block represented by rs7869. To establish
to what extent the rs7869 minor T-allele might affect PSAP
expression, we performed mutagenesis on a firefly luciferase
construct containing 1,116 bp of the PSAP 30 UTR to create two
clones containing either the rs7869 major C- or minor T-allele.
HeLa cells showed a significant increase in firefly luciferase
activity (mirroring PSAP promoter activity) when transfected

with the minor T-allele (Student’s t-test; Po0.002, n¼ 13;
Fig. 2a). To examine the effect of rs7869 in the context of
PSAP directly, we created plasmids containing the human PSAP
coding sequence along with its endogenous 30 UTR containing
either the rs7869 major C- or minor T-allele (PSAPþ 30UTR-C
and PSAPþ 30UTR-T, respectively). Both wild-type and mutant
rs7869 constructs were transfected into HeLa cells, after which
PSAP mRNA and protein levels were quantified. A GFP-
expressing vector was co-transfected with these PSAPþ 30UTR
plasmids to serve as a transfection efficiency control. While PSAP
mRNA levels were not different between cells transfected with
either PSAPþ 30UTR plasmid (Supplementary Fig. 3a), total
PSAP protein levels were significantly increased on transfection
with PSAPþ 30UTR-T as compared with PSAPþ 30UTR-C
(Supplementary Fig. 3b). Taken together, these results suggested
that rs7869 regulates PSAP protein levels. In our initial GWAS
cohort, each copy of the minor T-allele of rs7869 was associated
with a decrease in plasma PGRN levels in our GWAS cohort
(Fig. 2b). These results reveal a possible reciprocal relationship
between PSAP and PGRN levels, in which individuals carrying
the rs7869 T-allele have high levels of PSAP and low plasma levels
of PGRN.

Reduction of PSAP increases PGRN levels in vitro. Increasing
PGRN levels may be a viable therapeutic approach for GRN
mutation carriers and more generally for FTD and Alzheimer’s
disease patients. To determine whether reducing PSAP levels
increases PGRN levels in vitro, we transfected HeLa cells with
PSAP-targeting siRNAs. After 3 days of transfection, PSAP
knockdown caused a significant increase in PGRN in both cell
media and lysates when compared with controls as measured by
the R&D Systems PGRN ELISA (one-way analysis of variance
(ANOVA); Po0.001, nZ12; Fig. 3a). More specifically, the
PGRN ELISA signal was increased nearly sevenfold in the media,
whereas the signal in the lysates was increased over twofold in
response to PSAP knockdown (Fig. 3a). Similar to the data
obtained by ELISA, immunoblotting of the same samples showed
that reducing PSAP expression increased both intra- and extra-
cellular PGRN levels, with the greatest effects observed in the
media of the PSAP siRNA-transfected cells (one-way ANOVA;
Po0.001, nZ12; Fig. 3b,c). These effects on PGRN levels
appeared to be independent of the PSAP and PGRN receptor,
SORT1 (Fig. 3b). Also, GRN mRNA expression was increased in
response to PSAP knockdown using 20 nM of both PSAP siRNAs
and could contribute to the increase in PGRN protein levels
(Fig. 3d). However, a dose-response curve using varying PSAP
siRNA concentrations still showed a significant increase in
media PGRN levels using PSAP siRNA concentrations of 0.1
and 0.05 nM (Student’s t-tests; Po0.001 and n¼ 3 for both
concentrations) without affecting GRN mRNA (Supplementary
Fig. 4). These data suggest that reduced levels of PSAP
increase PGRN levels in the cell media, at least in part, through a
post-translational mechanism.

PSAP reduction in culture does not alter lysosomal function.
Complete loss of PSAP or the individual saposins has been shown
to cause lysosomal storage disorders. Thus, reducing PSAP
levels in vitro might alter lysosomal function which, in turn,
might influence PGRN levels. Translocation of a transcription
factor that specifically recognizes E-box sequences (TFEB) from
the cytoplasm to the nucleus has been used to indicate impaired
lysosomal function35–37. Therefore, we performed PSAP siRNA
transfections in HeLa cells that stably express TFEB-GFP.
Control and PSAP siRNA transfections showed TFEB-GFP
immunofluorescence predominantly in the cytoplasm (Fig. 4a,b,
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respectively). As a positive control, HeLa cells were treated with
chloroquine to disrupt lysosomal function, revealing the majority
of TFEB-GFP localization in the nucleus (Fig. 4c). Quantification
of TFEB-GFP localization showed a significant increase in the
nuclear to cytoplasmic ratio in chloroquine-treated cells, whereas
no significant difference in the TFEB-GFP nuclear to cytoplasmic
ratio was observed between cells transfected with control or PSAP
siRNA (Fig. 4d), indicating that PSAP knockdown in culture does
not disrupt lysosomal function.

We also addressed the specificity of PSAP-mediated increases
in extracellular PGRN levels. Immunoblots were run of the media
samples from control and PSAP siRNA-transfected HeLa cells
and were probed with antibodies against other lysosomal proteins
known to be secreted, such as cathepsin D, cathepsin L and
interferon gamma-inducible protein 30 (IFI30)38–40. The
immunoreactivity of cathepsin D, cathepsin L and IFI30 was
stronger in media from PSAP siRNA-transfected cells as
compared to controls (Fig. 4e). However, quantification of the
immunoreactive band densities revealed that PSAP reduction had
the greatest effect on PGRN as compared to other secreted
lysosomal proteins (Fig. 4f).

Reduction of PSAP increases PGRN levels in vivo. To ensure
that the increase in PGRN as a result of PSAP reduction could
also occur in a brain-relevant cell lines, we repeated the PSAP
siRNA transfections in human glioblastoma astrocytoma U251
cells. Similar to what we observed in HeLa cells, decreasing PSAP
levels resulted in increased PGRN levels in both the media and
lysates of U251 cells (Supplementary Fig. 5a,c). We then assessed
whether decreasing PSAP levels upregulates PGRN levels
in vivo by harvesting cortical mouse brain tissue from wild-type
(Psapþ /þ ) mice and mice lacking either 1 (Psapþ /� ) or 2
(Psap� /� ) copies of the Psap gene. Immunoblotting of mouse

brain tissue and mRNA analyses were used to verify Psap loss in
Psapþ /� and Psap� /� mice (Fig. 5a,d). Immunoblotting
further showed a marked increase in Pgrn levels only in mouse
brains completely lacking Psap expression as compared with
Psapþ /þ samples (Fig. 5a,b), potentially due to increased Grn
mRNA levels (Fig. 5e). These data suggest that a 50% loss in Psap
might not be sufficient to increase Pgrn levels in the brain.
However, the protein contained in cortical brain lysates is pre-
dominantly intracellular, and since our in vitro data suggested
that PSAP knockdown has the most significant effect on secreted
PGRN levels, we also analysed Pgrn levels in mouse plasma. The
highest levels of Pgrn were observed in Psap� /� mouse plasma
(one-way ANOVA; Po0.0001 as compared with Psapþ /þ
mice); however, Psapþ /� mouse plasma Pgrn levels were also
significantly increased as compared with Psapþ /þ (one-way
ANOVA; Po0.05, n¼ 3; Fig. 5a,c), indicating that both partial
and complete Psap loss are sufficient to increase extracellular
Pgrn levels in vivo.

PSAP overexpression changes PGRN levels and oligomerization.
Based on our GWAS and the fact that PSAP loss results in
increased PGRN levels in vitro and in vivo, we hypothesized that
increasing PSAP levels might cause a reduction in PGRN levels.
To test this hypothesis, we overexpressed human PSAP in HeLa
cells and measured both intra- and extracellular levels of PGRN
by ELISA and immunoblotting. PSAP-transfected cells showed a
significant decrease of PGRN in both the cell lysate and media
compared with controls as measured by ELISA (Student’s t-tests;
Po0.0001, nZ12; Fig. 6a). These changes were likely post-
translational since GRN mRNA levels were not affected (Fig. 6d).
Immunoblotting was performed on these same samples to
validate the changes in PGRN levels post PSAP overexpression.
While intracellular PGRN levels were still found to be reduced by
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PSAP overexpression, immunoblotting unexpectedly revealed a
significant increase in extracellular PGRN levels in cells over-
expressing PSAP (Student’s t-test; Po0.0001, nZ12; Fig. 6b,c).
These data conflicted with the ELISA results, which had
previously suggested PSAP overexpression to decrease extra-
cellular PGRN levels. Thus, we measured intra- and extracellular
PGRN using an alternative PGRN ELISA supplied by Adipogen
using HeLa cell conditioned media and lysates with and without
PSAP knockdown or overexpression. Consistent with our
previous ELISA results, PSAP overexpression resulted in a
significant reduction in the PGRN ELISA signal in both the cell
media and lysates of PSAP-transfected cells (Supplementary
Fig. 6). This indicated that the discrepancy observed between the
PGRN ELISA and immunoblotting of PSAP-overexpressing
media was not specific to the R&D Systems PGRN ELISA.

A significant difference between PGRN measurements by
immunoblot versus ELISA is that the proteins are not denatured

before ELISA analyses as they are for immunoblotting. A recent
study by Nguyen et al.41 reported that secreted PGRN in its native
form exists predominantly as a homodimer41. Thus, it is possible
that changing PSAP levels alters the ratio of monomeric to
dimeric, or possibly higher oligomeric species of PGRN, which
might result in decreased epitope recognition by the PGRN
ELISAs. To address this possibility, we first denatured proteins in
conditioned media from either control- or PSAP-transfected cells
using guanidine-hydrochloride (HCl) at varying concentrations
before running the PGRN ELISAs. To ensure the guanidine-HCl
did not disturb the antibody complexes in the ELISA plate, the
final concentration of guanidine-HCl remained 0.5M or less and
all sample results were compared with PGRN standards
containing the same final concentration of guanidine-HCl. The
R&D Systems ELISA requires the use of undiluted media to detect
PGRN, so low guanidine-HCl concentrations (0.1 and 0.5M)
were used for denaturing. In contrast, we used a high guanidine-
HCl concentration (4M) to denature media samples measured on
the Adipogen PGRN ELISA plates, which requires the use of
diluted samples. Guanidine-HCl treatment significantly increased
the PGRN ELISA signal in PSAP-transfected media as compared
with PSAP-transfected media without guanidine-HCl treatment
(one-way ANOVA; Po0.0001; Fig. 7a,b). In fact, incubation of
PSAP-transfected media with 4M guanidine-HCl now showed a
significant increase in the PGRN ELISA signal as compared
with control-transfected media (Student’s t-test; Po0.001, n¼ 3;
Fig. 7b), reflective of the immunoblotting data in Fig. 6b. Taken
together, these results suggested that PSAP overexpression, in
addition to PSAP knockdown, leads to an increase in extracellular
PGRN levels in cell culture. Furthermore, PSAP overexpression
likely induces the oligomerization of endogenously secreted
PGRN.

Further evidence for this hypothesis was obtained by native
gel electrophoresis of conditioned media from control- or
PSAP-transfected HeLa cells. Compared with media of control-
transfected cells, the PGRN detected in media from PSAP-
overexpressing cells migrated more slowly (Fig. 7c), suggesting a
higher molecular weight. To more accurately determine the
molecular size of extracellular PGRN before and after changing
PSAP levels, we treated the conditioned media with a chemical
crosslinker, bis(silfosuccinimidyl) suberate (BS3), that crosslinks
primary amines of interacting proteins. Immunoblotting of
BS3-treated media from cells transfected with a control plasmid
revealed PGRN-immunoreactive bands at both B80 and B160
kDa, suggesting that extracellular PGRN exists in both a
monomeric and dimeric form (Fig. 7d)41,42. Crosslinked media
post PSAP overexpression exhibited a subtle decrease in
extracellular PGRN monomers while inducing a substantial
increase in both PGRN dimers and a higher molecular weight
PGRN species not observed in control-transfected media
(Fig. 7d). Interestingly, subsequent native gel electrophoresis of
conditioned media obtained after PSAP knockdown showed that
PGRN migrated more rapidly in these samples compared with
control siRNA-transfected cell media (Fig. 7e), suggesting that the
predominant PGRN form in this condition was monomeric,
a finding further confirmed by BS3 crosslinking (Fig. 7f). Similar
results were obtained when these experiments were repeated in
U251 cells (Supplementary Fig. 5b,d–f).

PSAP-dependent changes in PGRN occur in GRN mutant cells.
Our results suggest that both PSAP knockdown and over-
expression lead to an increase in total extracellular PGRN levels,
albeit different PGRN species, revealing PSAP as a potential novel
therapeutic target for individuals carrying GRN mutations. To
determine to what extent PSAP can rescue extracellular PGRN
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levels in a cellular model of PGRN loss, we performed PSAP
knockdown and overexpression in human-derived fibroblast cells
obtained from siblings in which one individual carried a GRN
mutation. Immunoblotting of control-transfected cells confirmed
PGRN loss in the GRN mutant cell line as compared with wild-
type cells (Fig. 8a,b). Focusing on wild-type cells first, PSAP
knockdown or overexpression significantly increased extracellular
PGRN levels as compared with control-transfected cells (one-way
ANOVA; Po0.001, n¼ 3; Fig. 8a–d). Moreover, crosslinking
experiments confirmed the presence of both monomeric and
dimeric PGRN in the media of these fibroblasts and showed that

PSAP knockdown led to an increase in monomeric PGRN
(Fig. 8e), whereas the level of PGRN dimers was increased upon
PSAP overexpression (Fig. 8f). Importantly, in mutant cell media,
PSAP knockdown rescued PGRN levels beyond that of wild-type
cells (Fig. 8a,c). Crosslinking of this media indicated that the form
of PGRN increased by PSAP knockdown was monomeric, similar
to what was observed in wild-type cells (Fig. 8e). Although PSAP
overexpression was unable to significantly increase the total levels
of extracellular PGRN levels in the mutant cell line, crosslinking
experiments revealed a marked increase in extracellular PGRN
dimers on PSAP overexpression (Fig. 8f).
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PSAP–PGRN interaction. We next performed media mixture
experiments to determine whether exogenous PSAP induces
oligomerization of secreted PGRN monomers. To address this
question, we harvested conditioned media from control siRNA-
or PSAP siRNA-transfected cells. To this media, we added
conditioned media from control-transfected cells, conditioned
media from PSAP-overexpressing cells, or unconditioned media
containing recombinant human PSAP (rhPSAP). These mixtures
were incubated for 1 h before conducting BS3 crosslinking.
When rhPSAP or PSAP-overexpressing media were added to the
control media, a slight reduction in PGRN monomers and a
slight increase in PGRN dimers and oligomers were observed,
suggesting that a small portion of the pre-existing PGRN
monomers in the control media formed dimers or oligomers
when exogenous PSAP was added (Fig. 9a). More noticeably,
when PSAP-overexpressing media or rhPSAP was added to media
previously deprived of PSAP, a large fraction of PGRN monomers
in this sample were induced to form dimeric and oligomeric
species (Fig. 9a). These results indicate that PSAP knockdown-
induced PGRN monomer formation is reversible by adding
exogenous PSAP, suggesting that PSAP removal does not change
the ability of PGRN to form oligomers, but that the presence of
PSAP is required for PGRN oligomerization.

Prompted by this finding, we then probed the same
immunoblot with a PSAP-specific antibody to determine whether
PSAP is also in an oligomeric form in conditioned media.
A PSAP-immunoreactive band in crosslinked samples was
observed at B160 kDa, which is the same molecular weight as
one of the PGRN-immunoreactive bands (Fig. 9a). The molecular
weight of extracellular PSAP monomers is B70 kDa, and
extracellular PGRN monomers are B80 kDa, so we cannot
exclude the possibility that these two proteins are directly
interacting to form a heterodimeric species. To determine
whether PSAP and PGRN interact extracellularly, immunopreci-
pitation (IP) assays were performed using conditioned media
from HeLa cells that had been co-transfected with PSAP and
PGRN in which either the PSAP or PGRN contained a V5 tag at
the C-terminus (Fig. 9b,c, respectively). IPs were performed using
Protein G magnetic beads that had been bound to either a V5
antibody or an immunoglobulin-G (IgG) control. A portion of
the V5-tagged PSAP or PGRN was successfully pulled down with
the V5 antibody IP, whereas none was visible in the IgG control
(Fig. 9b,c). Furthermore, untagged PGRN protein was pulled
down with the PSAP-V5 and untagged PSAP was pulled down
with PGRN-V5 (Fig. 9b,c). Taken together, these results identified
PSAP as a novel PGRN binding partner and suggested that PSAP
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induces the oligomerization of PGRN, at least in part, through a
direct interaction.

PSAP does not outcompete PGRN for SORT1 binding.
A feature that is shared between PSAP and PGRN is their ability
to bind to the luminal domain of the SORT1 receptor43,44. In fact,
reduction of SORT1 expression has been reported to increase
extracellular PGRN levels. Therefore, one potential mechanism by
which PSAP overexpression might lead to increased extracellular
PGRN is by outcompeting for SORT1 binding. To address this
hypothesis, we generated a PSAP expression plasmid lacking the

PSAP C-terminus (DCter PSAP). PSAP protein lacking this
region was previously determined to be inadequate for SORT1
binding43. Overexpression experiments in HeLa cells indicated
that DCter PSAP, like WT PSAP, is overexpressed and localized
both intra- and extracellularly (Fig. 10a). Importantly, similar to
WT PSAP overexpression (reported in Fig. 6), PGRN levels were
significantly increased in the media of HeLa cells transfected with
DCter PSAP as compared with controls, whereas intracellular
levels of PGRN were not changed. (Fig. 10b,c). These findings
indicate that the PSAP-induced increase in media PGRN levels on
PSAP overexpression are not due to PSAP outcompeting PGRN
for SORT1 binding.

PGRN

PGRN PGRN

Media

Media Media

Media

PSAP

PGRN

PSAP

PSAP #1 siRNA +–– ––

– –

–– ––+ + +

WT MUT

PSAP plasmid + + + +

WT MUT

80

80
60

kDa

80

80
60

kDa

+ +

WT MUT

M
ed

ia
 P

G
R

N
 le

ve
ls

(%
 o

f W
T

 c
on

tr
ol

)

M
ed

ia
 P

G
R

N
 le

ve
ls

(%
 o

f W
T

 c
on

tr
ol

)

0

200

100

300

500

400

600 ***

**

0

40

80
100
120
140
160

60

*

150
100
80
60

kDa

150
100
80
60

kDa

C P #1 C P #1

WT MUT

C PSAP C PSAPsiRNA Plasmid

WT MUT

PSAP #1
siRNA

– –+ +

WT MUT
PSAP

plasmid

20

a b

c d

e f

Figure 8 | PGRN levels and oligomerization are changed in human fibroblasts derived from individuals with and without GRN mutations.

(a,b) Immunoblots of media and lysates obtained from wild type (WT) or GRN mutant (MUT) human fibroblasts transfected with either control or

PSAP siRNAs (a), or with either control or PSAP plasmids (b). (c,d) Quantification of PGRN immunoreactivity in media from WT or GRN mutant (MUT)

human fibroblasts transfected with either control or PSAP siRNAs (c) or with either control or PSAP plasmids (d) (n¼ 3 per group). (e,f) Immunoblot of

BS3-crosslinked media obtained from WT or GRN mutant (MUT) human fibroblasts transfected with either control or PSAP siRNAs (e) or with either

control or PSAP plasmids (f). Graphs represent the mean±s.e.m. *Differs from control-transfected cells of the same cell line, Po0.05, **Po0.01,

***Po0.001 by one-way ANOVAs.

150
100
80
60
50

kDa 100

80

60
50

kDaInput
V5 IP

PSAP-V5 + PGRN media PGRN-V5 + PSAP media

IgG IP
Input

V5 IP
IgG IP

100

80

60
50

kDaInput
V5 IP

IgG IP
Input

V5 IP
IgG IP

Blot: PGRN V5 Blot: PSAP V5
PGRN PSAP

P
S

A
P

C
on

t.
C

on
t. 

+
 P

S
A

P

C
on

t. 
+

 r
hP

S
A

P

si
P

S
A

P

si
P

S
A

P
 +

 P
S

A
P

si
P

S
A

P
 +

 r
hP

S
A

P

P
S

A
P

C
on

t.

C
on

t. 
+

 P
S

A
P

C
on

t. 
+

 r
hP

S
A

P

si
P

S
A

P
si

P
S

A
P

 +
 P

S
A

P

si
P

S
A

P
 +

 r
hP

S
A

P

rh
P

S
A

P

a b c

Figure 9 | Extracellular PSAP might directly interact with extracellular PGRN. (a) Immunoblot of crosslinked conditioned media from HeLa cells

transfected with PSAP plasmid (PSAP), control siRNA (Cont.) or PSAP siRNA (siPSAP) mixed together or with rhPSAP. (b,c) Co-IP assays of conditioned

media harvested from HeLa cells co-transfected with PSAP-V5 and untagged PGRN plasmids (b) or with PGRN-V5 and untagged PSAP plasmids (c).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms11992

8 NATURE COMMUNICATIONS | 7:11992 | DOI: 10.1038/ncomms11992 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


In addition to changing PGRN levels, the data provided
in Figs 7 and 8 indicated that PSAP overexpression also
promotes PGRN homomeric and/or heteromeric oligomerization.
To examine whether PSAP’s C-terminus is involved in
PSAP-mediated PGRN oligomerization, we repeated the BS3

crosslinking experiments in HeLa media samples following DCter
PSAP overexpression. Similar to what we observed with WT
PSAP, crosslinked media post DCter PSAP overexpression
enhanced the formation of higher PGRN oligomeric species with
the most prominent immunoreactivity at B160 kDa (Fig. 10d).
DCter PSAP immunoreactivity was also observed in crosslinked
media samples at this same molecular weight (Fig. 10d). To
determine whether DCter PSAP is still able to interact with
PGRN, IP assays were performed using conditioned media from
HeLa cells that had been co-transfected with DCter PSAP and
PGRN in which either the DCter PSAP or PGRN contained a
C-terminal V5 tag (Fig. 10e,f, respectively). Comparable to our
observations with WT PSAP, we were able to successfully co-IP
PGRN when DCter PSAP-V5 was pulled out of the conditioned
media (Fig. 10e). In a reciprocal fashion, untagged DCter PSAP
was observed in the IP sample obtained after IPing for PGRN-V5
(Fig. 10f). Together these results suggest that the C-terminus of
PSAP is not required for PSAP-dependent oligomerization of
itself or PGRN, nor is it required for the interaction of PSAP and
PGRN.

Discussion
Due to PGRN’s neuroprotective properties, identifying proteins
or compounds to increase PGRN levels is a key therapeutic
avenue, not only for FTD patients with loss-of-function GRN
mutations, but also for other neurodegenerative diseases. In this
study, we identify PSAP as a novel PGRN regulator through an

innovative genetics approach linking whole-genome data with
plasma PGRN levels in a series of more than 900 non-demented
individuals. Using in vitro and in vivo studies, we show that
both PSAP overexpression and knockdown result in increased
extracellular PGRN levels; however, the specific PGRN species
that were increased is different, with elevated levels of
PGRN monomer following PSAP knockdown and increased
dimers/oligomers after PSAP overexpression. We further provide
evidence that PSAP directly binds to PGRN, establishing PSAP as
a novel PGRN binding protein. Our findings highlight a unique
layer of complexity when studying proteins or compounds aimed
at increasing total levels of PGRN which needs to be considered
when identifying new targets for PGRN regulation.

We discovered PSAP as a novel PGRN regulator through
association analysis of whole-genome sequence data with PGRN
plasma levels, which showed genome-wide significant association
with the chromosome 10q21.1–22.2 locus where PSAP resides.
Genome-wide significant association was also confirmed with
the chromosome 1p13.3 region containing SORT1, a neuronal
receptor for PGRN (and PSAP) which was previously identified
as a PGRN regulator in human plasma32. Although significant
SNPs covered a region containing four genes on chromosome
10q21.1–22.2, PSAP was the most obvious candidate to be
involved in PGRN regulation because of its similarity to PGRN in
structure, function, and neurotrophic properties34. In addition,
PSAP has a previously established role in both neurodegeneration
and brain lysosomal storage disorders45.

PSAP is a multifunctional glycoprotein that plays a role in the
brain, both intra- and extracellularly. The PSAP precursor protein
can be directly secreted into the extracellular matrix where it
exhibits neurotrophic properties46,47. Inside the cell, PSAP is
shuttled to the lysosome through an LRP1-dependent secretion-
recapture mechanism or by the SORT1 receptor from the
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trans-Golgi network where it is proteolytically processed into four
smaller saposin peptides48,49,50. The saposin peptides (saposins
A–D) are critical for lysosomal hydrolase function and
subsequent hydrolysis of several glycosphingolipids48,51. As a
result, individuals homozygous for PSAP loss-of-function
mutations develop one of an assortment of lysosomal storage
disorders52. In support of a functional role for PSAP SNPs in
regulating PGRN levels, data mining and in vitro functional
analyses further identified SNP rs7869 as a potential functional
variant regulating PSAP expression. Although it is unknown how
rs7869 mediates PSAP protein levels, it is possible that it could
alter a microRNA binding site given its location in the 30 UTR.
We recognize that the functional studies performed in cell lines
only suggest a role of rs7869 in PSAP and PGRN biology; thus,
further examination in primary human cells expressing the
different rs7869 variants could further address these questions. In
addition, our study does not exclude other PSAP variants or other
genes within the chromosome 10q region that might contribute to
the effects observed in human plasma.

While our initial PGRN ELISA-based measurements and
in vitro assays suggested an inverse correlation between PSAP
and PGRN levels, our follow-up studies unexpectedly indicated
that extracellular PGRN levels increased on both PSAP over-
expression and knockdown. We observed discrepant findings
when comparing PGRN levels as measured by immunoblot and
ELISA on PSAP overexpression in cell culture which we were able
to attribute, at least in part, to the commercial ELISAs’ inability to
accurately detect higher molecular weight PGRN species present
in these samples. Crosslinking and subsequent immunoblotting
indicated that while both PSAP overexpression and knockdown
increased total extracellular PGRN levels, PSAP knockdown
specifically increased monomeric PGRN levels in cell media,
while PSAP overexpression increased PGRN species with dimeric
and oligomeric molecular weights. Similar PSAP-mediated effects
were observed in U251 glioblastoma astrocytoma cells and in
patient-derived fibroblasts from a GRN mutation carrier and an
unaffected relative, where both PSAP knockdown and PSAP
overexpression increased extracellular PGRN levels; yet, in the
case of PSAP knockdown, monomeric PGRN species were
increased while PSAP overexpression increased dimeric PGRN
species. Supporting evidence for the presence of PGRN oligomers
was provided by treating media samples with guanidine, by the
detection of higher molecular weight PGRN species via native
gel electrophoresis, and by media protein crosslinking. The
realization that commercially available PGRN ELISA assays may
inadequately detect the various PGRN species that exist in vivo
needs to be considered and might have implications for studies
using these ELISAs to identify PGRN regulators or in studies
related to the natural history of PGRN levels in human
biospecimens and future treatment trials. Equally as important
for PGRN-related therapeutics will be to determine the
mechanism by which PSAP knockdown and/or overexpression
increase extracellular PGRN levels. A likely candidate involved in
these processes is the SORT1 receptor utilized by both PGRN and
PSAP. The data provided herein exclude the possibility that PSAP
overexpression merely out-competes PGRN for SORT1 binding;
however, we cannot rule out potential PSAP-related changes
in SORT1 localization and/or modification that might have
downstream effects on PGRN.

The possible existence of PGRN dimers was first published in
2010 by Okura et al.42 who detected PGRN-immunoreactive
bands at B80 and B130 kDa from human monocyte-derived
macrophage media. A more recent report by Nguyen et al.41

showed that the majority of secreted and circulating PGRN exists
at a dimeric molecular weight. Therefore, it is conceivable that
dimeric PGRN is the more biologically relevant and functional

PGRN form. Contrastingly, it is also possible that monomeric
PGRN turnover is more rapid, and thus exists at levels below the
detection limits in these fluids. Additional research is required to
further elucidate the PGRN species that exist in various fluids and
tissues, and to address to what extent the different PGRN forms,
either monomeric or oligomeric, might be responsible for
PGRN-dependent neuroprotection. This is crucial since both
PSAP knockdown and overexpression are able to increase total
extracellular PGRN levels in human-derived cell lines, but only
one of these strategies may be a beneficial therapeutic avenue.
Second, it will be critical to further characterize the molecular
mechanisms behind PSAP-induced PGRN oligomerization. In
this respect, it is important to note that PGRN might form a
complex with other proteins, producing an extracellular PGRN
species identified at a molecular weight similar to a PGRN
homodimer. Since the molecular weight of fully glycosylated
PSAP and PGRN is similar (B70 and B80 kDa, respectively),
PSAP–PGRN heterodimers might be easily interpreted as PGRN
homodimers. Our current data in vitro already indicates that at
least a subset of PGRN is bound to PSAP and that the C-terminus
of PSAP is not required for this interaction. If in fact a subset of
dimeric PGRN is composed of PSAP–PGRN heterodimers, this
may explain why loss of PSAP in cell culture caused an increase
in the monomeric form of extracellular PGRN. On the other
hand, we cannot exclude that extracellular PSAP regulates the
formation of PGRN homodimers or oligomerization with
other proteins. Furthermore, it remains unknown whether the
PSAP/PGRN interaction is required for the effect of PSAP on
PGRN levels. If future studies are able to determine the specific
region of PSAP required for PSAP–PGRN binding, it may be
possible to elucidate the relationship between these two
phenomena.

Finally, we assessed the in vivo consequence of Psap deficiency
using a knockout mouse model previously generated to study
lysosomal storage disorders. In support of our human plasma and
cell culture data, we observed an increase in Pgrn protein levels in
brain tissue from Psap knockout mice, but only in the full
knockout and not in heterozygous Psapþ /� mice. Importantly,
this effect on intracellular Pgrn levels is not unique to Psap
knockout mice since a previous report showed that ablation of
another critical lysosomal protein, cathepsin D, also resulted in
upregulation of Pgrn and other lysosomal proteins, likely due to
lysosomal enlargement or lack of lysosomal-dependent degrada-
tion53. The intracellular changes in Pgrn and other lysosomal
proteins may, therefore, reflect a dysfunction of the lysosomes in
this model system, and are independent from PSAP’s extracellular
effects on PGRN levels revealed in our studies. This would be
supported by the fact that we did not observe an increase in brain
intracellular Pgrn levels in mice heterozygous for Psap loss. In
contrast, mice with 50% loss of Psap did show a marked increase
in plasma Pgrn levels, indicating that partial Psap reduction is
sufficient to increase extracellular Pgrn in vivo. This is in line with
the TFEB translocation assay that we performed in HeLa cells
after PSAP knockdown, which excluded the possibility that
PGRN is increased in response to PSAP reduction due to
PSAP-mediated lysosomal dysfunction. These findings are
exciting and suggest that while complete loss of PSAP has
overall detrimental outcomes and results in lysosomal storage
disease, it is possible that partial loss of PSAP might have
beneficial effects. In fact, no reports have been published to
describe health deficits in individuals heterozygous for PSAP
mutations. Thus, mildly reducing PSAP levels might be a
promising therapeutic for increasing extracellular PGRN.

Taken together, this study is the first to identify PSAP as a
PGRN regulator. Our functional assessment of PSAP-mediated
changes in PGRN also furthered our understanding of PGRN-
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related methodologies and biology for consideration in future
PGRN assessments. First, our data revealed that the current
commercially available ELISAs commonly used for PGRN
measurements in human fluids do not detect all PGRN forms.
This has potential consequences for PGRN-related therapeutics in
which PGRN ELISAs are being proposed as a tool to monitor the
efficacy of PGRN-targeting pharmacological agents. Second, our
findings are the first to exemplify a PGRN regulator that mediates
not only total PGRN levels, but also PGRN oligomeric
composition. A better understanding of the involvement and
functional mechanisms of different PGRN oligomeric species will
be greatly important in the PGRN field.

Methods
Initial subjects cohort and whole-genome sequencing. The WGS data was
kindly shared by the T2D-GENES project (unpublished data). T2D-GENES is a
large collaborative study composed of 1,039 individuals that where whole-genome
sequenced or directly imputed as described below. Those individuals were drawn
from 20 large Mexican-American pedigrees with 22–86 individuals per family over
3–5 generations (48.9% males). All participants live in the great San Antonio area,
Texas, USA and are all participants of the SAFS project in which all patients
provided informed consent54. The use of human samples by T2D-GENES and the
SAFS project were approved and follow all guidelines enforced by the University of
Texas Rio Grande Valley Institutional Review Board.

Initially, a set of 586 individuals was sequenced using a sequence-by-ligation
method by Complete Genomics Inc. (Mountain View, CA). The sequencing
paired-end reads of 70 bp were mapped in the human genome reference (V 37.2)
with a mean coverage of 60x. The genetic variants were called by Complete
Genomics Inc. using their proprietary dedicated software (version 2.0.3.1). The rate
of genotype discordance between called alleles in the WGS data and a previously
generated GWAS was between 0.2 and 0.6% for each sequenced sample. The WGS
data generated on the 586 individuals was then used in conjunction with the
known pedigree relationship and the previously generated genome-wide DNA chip
data for an effective offspring imputation using MaCH software55,56. A set of 453
individuals were imputed with high confidence giving a final total sample size of
1,039 densely genotyped individuals. In total 21.5 million single nucleotide variants
were identified of which 67% were rare with a minor allele frequency below 1%
(Supplementary Tables 1–3). This proportion is expected and highlights the power
of large pedigrees for the assessment of rare variants in phenotypes of interest.
Please note that only a subset of these individuals (n¼ 920) were included in the
GWAS presented in this study because only these individuals also had plasma
samples available for PGRN measurement.

Replication subjects cohorts and sequencing. Chromosome 10 SNPs rs7869 and
rs1867977 genotyping was performed in replication cohorts 1 and 2 by either
Sanger sequencing or the Sequenom MassArray iPLEX platform (San Diego, CA)
and Typer 4.0 software. Replication cohort 1 includes 269 non-demented
individuals recruited into the Mayo Clinic Study of Aging for which details are
described elsewhere33,57,58. Replication cohort 2 was also previously published
and consists of 488 non-demented individuals recruited at the Mayo Clinic
Jacksonville32. Individuals included in the replication cohorts gave written consent
with approval from the Mayo Clinic and Olmsted Medical Center Institutional
Review Boards.

PGRN ELISAs. Plasma PGRN levels of the replication subjects cohorts were
available from previous studies32,33. To determine the PGRN levels in plasma
samples from the subjects in the initial cohort or in cell culture samples, we used
the Quantikine Human Progranulin Immunoassay (R&D Systems, Minneapolis,
MN) per the manufacturer’s instructions using undiluted samples analysed in
duplicate. ELISA plates were analysed with samples randomized based on family
number, age at draw, gender and years of plasma storage. Supplementary Fig. 7
shows the PGRN plasma distribution in our population. Cell culture conditioned
media were also analysed with the Human Progranulin ELISA Kit from Adipogen
Inc. (Seoul, Korea) in which the sample was diluted 1:50 in the provided dilution
buffer and analysed in duplicate. Each kit’s provided recombinant human PGRN
was used as a standard. A subset of PGRN ELISAs was carried out using media
samples denatured with guanidine-HCl. For the R&D ELISA, 10 ml of 1M
guanidine-HCl was added to 90 ml of either control- or PSAP-transfected media
and this was left to incubate at room temperature for 3 h before loading into the
ELISA plate. For the Adipogen PGRN ELISA, 50 ml of 8M guanidine-HCl was
added to 50 ml of media from either control- or PSAP-transfected cells and
incubated for 3 h at room temperature. Post incubation, the samples were further
diluted 1:25 in the provided dilution buffer before loading into the ELISA plate. All
guanidine-treated samples were compared with the provided PGRN standards that
also contained the same final concentration of guanidine-HCl.

Cell culture and transfections. HeLa cells (purchased from American Type
Culture Collection, Manassas, VA) were cultured in Eagle’s minimum essential
medium supplemented with 10% foetal bovine serum (FBS) and 1% penicillin/
streptomycin (pen/strep). U251 cells (a generous gift from Dr Jenkins of
Mayo Clinic Rochester) were maintained in Dulbecco’s modified eagle medium
supplemented with 10% FBS, 1% pen/strep and 1% L-glutamine. Human fibroblast
cell lines were obtained from the University of California San Francisco and were
also cultured in Dulbecco’s modified eagle medium supplemented with 10% FBS,
1% pen/strep and 1% non-essential amino acids. All lines were maintained at 37 �C,
5% CO2.

PSAP gene knockdown was achieved by reverse transfection of 150,000–250,000
cells per well in a 6-well culture dish using siRNA1 (target sequence 50-AAGAAA
UACUCGACGCUUU-30 , J-003694-17, GE Dharmacon, Lafayette, CO) or siRNA2
(target sequence 50-CGACAUAUGCAAAGACGUU-30, J-003694-18, GE
Dharmacon) designed against the coding region. A non-targeting siRNA (target
sequence 50-UGGUUUACAUGUCGACUAA-30 , D-001210-05, GE Dharmacon)
was used as a control. Briefly, RNA oligonucleotides were incubated in 500 ml
media with Lipofectamine RNAiMax (Life Technologies) transfection reagent per
the manufacturer’s protocol and added to each well of 6-well culture dishes, after
which the cells were plated in growth medium free of antibiotics. siRNAs were used
at a final concentration in each well of 0.01–20 nM. For complementary DNA
(cDNA) transfections, the cells were plated one day prior in 6-well culture dishes at
200,000–300,000 cells per well. Cells were transfected the following day with
plasmid DNA (2 mg plasmid for single transfections and 1 mg of each plasmid for
co-transfections) using the Lipofectamine 2000 transfection reagent (Life
Technologies, Grand Island, NY) or X-tremeGENE HP DNA Transfection Reagent
(Roche Life Science, Indianapolis, IN) per the manufacturer’s instructions. Of note,
all cell transfections were completed in growth medium supplemented with 5% FBS
for all experiments in which media was collected for immunoblotting to reduce
interference of the bovine serum albumin contained in the serum supplement. For
overexpression experiments, the pAAV empty vector, eGFP-pAAV or pEGFP-N1
was used as a control. Untagged and V5-tagged PSAP-pAAV constructs were
generated by PCR-amplifying the coding sequence of PSAP from PSAP-pCMV-
XL5 (Origene) using primers to maintain the stop codon or to add a C-terminal V5
tag. Untagged and V5-tagged C-terminal deletion (DCter) PSAP constructs were
generated using primers to remove amino acids 491–526 from the human PSAP
protein sequence. Primer sequences are included in Supplementary Table 4.

Immunoblotting. Media samples for analysis were prepared by harvesting the
media 3 days post transfection and removing debris by centrifugation for 5min at
3,824g at 4 �C. Lysates were prepared by harvesting 3 days post transfection in
radioactive IP assay buffer (Boston BioProducts) supplemented with protease/
phosphatase inhibitors (Thermo Scientific, Waltham, MA). Undiluted media
and lysate samples were mixed with an equivalent volume of Novex sample buffer
(Life Technologies) supplemented to 5% b-mercaptoethanol. Proteins were
denatured by heating at 95 �C for 5min before loading into SDS-polyacrylamide
gels (Life Technologies), transferred to Immobilon membranes (Millipore), and
immunoblotted with the primary antibody. The next day, blots were incubated
with an HRP-conjugated secondary antibody (1:5,000; Promega) and bands were
detected by enhanced chemiluminescence using Western Lightning Plus-ECL
reagents (Perkin Elmer, Waltham, MA). Full blot images of all immunoblots
included in Figs 3–10 can be visualized in Supplementary Figs 8–15.

The following primary antibodies were used: rabbit anti-PGRN (1:1,000; Life
Technologies), rabbit anti-PSAP (1:1,000; ProteinTech, Chicago, IL), rabbit
anti-Psap59 (1:20,000; a generous gift from Dr Sun, Cincinnati Children’s Hospital
Medical Center), mouse anti-SORT1 (1:1,000; R&D Systems), goat anti-V5
(1:10,000; Novus Biologicals, Littleton, CO), mouse anti-GFP (1:20,000; Millipore,
Billerica, MA), sheep anti-IFI30 (1:200; R&D Systems), goat anti-cathepsin
D (1:200; R&D Systems), goat anti-cathepsin L(1:200; R&D Systems) and mouse
anti-GAPDH (1:500,000; Meridian Life Science, Cincinnati, OH). The polyclonal
anti-progranulin antibody (used at 1:10,000) was generated by injecting into rabbits
a carboxyl-terminally amidated peptide (linker 1, (C)TLLKKFPAQKTNRAVSL,
amino acid residues 185–202) through an N-terminally introduced cysteine residue
to maieimide-activated keyhole limpet haemocyanin. All procedures were done
according to the institutionally standardized rabbit immunization protocol that was
reviewed and approved by the Institutional Animal Care and Use Committee
(IACUC) at UT Southwestern following AAALAC guidelines.

TFEB-GFP localization. PSAP knockdown was performed as described above
using a final concentration of 20 nM siRNA. Transfection complexes were gently
added to each well of a 24-well tissue culture plate containing HeLa cells stably
expressing TFEB-GFP (ref. 36). Cells were incubated at 37 �C for 72 h. Where
indicated, the incubation of cells with 50 mM chloroquine for 12 h at 37 �C was
performed as a positive control that perturbs lysosome function and causes robust
TFEB-GFP translocation to the nucleus36. Cells were fixed in 4% paraformaldehyde
and immunocytochemical analysis was performed using an anti-GFP antibody
(Roche) for TFEB-GFP detection and 40,6-diamidino-2-phenylindole (1mgml� 1;
Life Technologies) to stain nuclei.

Spinning disc confocal microscopy was performed with a Nikon Ti-E Eclipse
inverted microscope (equipped with a � 40 Plan Apochromat (NA 1.0) oil
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immersion objective) and a spinning disk confocal scan head (CSU-X1; Yokogawa,
Tokyo, Japan) driven by Volocity (Improvision; Perkin Elmer, Waltham, MA)
software. Seventy to eighty TFEB-GFP-expressing cells were analysed per
experiment and the ratio of nuclear/cytoplasmic TFEB in three separate
experiments was quantified using CellProfiler software60. To this end, nuclei were
identified by 40 ,6-diamidino-2-phenylindole staining and nuclear edges were
uniformly expanded (10 pixels) to form a halo that defined the surrounding
cytoplasmic compartment in each cell. This enabled us to measure the mean
intensities of the nuclear and cytoplasmic intensities and subsequently calculate the
TFEB nuclear/cytoplasmic ratios on a cell-by-cell basis.

Mouse tissue harvest and sample preparation. Male Psapþ /þ , Psapþ /�
and Psap� /� mice61,62 were subjected to CO2 narcosis at 3 weeks of age and
perfused with 10–15mls saline solution. Before perfusion, the blood was collected
from the hepatic portal vein and transferred into a tube with 20 ml of 0.5M EDTA.
Plasma was separated by centrifugation at 2,300g at 4 �C for 10min, and stored at
� 80 �C. On use for immunoblotting, the plasma was thawed and diluted 1:50 in
PBS, after which the sample was denatured in an equivalent volume of Novex
sample buffer and loaded into SDS-polyacrylamide gels (Life Technologies). Brain
tissue was extracted and stored at � 80 �C before use. For immunoblotting
experiments, B50mg cortical brain tissue was homogenized in 200ml radioactive
IP assay buffer (Boston BioProducts) supplemented with protease/phosphatase
inhibitors (Thermo Scientific, Waltham, MA). Samples were subjected to
centrifugation at 4 �C for 5min at 20,817g and the supernatant was transferred to a
fresh tube. Protein concentrations were determined by the Pierce Bicinchoninic
Acid Protein Assay (Thermo Scientific) per the manufacturer’s instructions using
known concentrations of bovine serum albumin as standards. Lysates were
prepared at a concentration of 2mgml� 1 protein in Novex sample buffer before
denaturing by heating 5min at 95 �C. All animal protocols and procedures were
in compliance and approved by the IACUC at Cincinnati Children’s Hospital
Medical Center.

Crosslinking assays. HeLa cells were transfected as described above and media
samples were prepared for crosslinking as follows. Two days after transfection, the
media were changed to serum-free overnight. The following day, the media were
harvested and centrifuged for 5min at 3,824g at 4 �C to remove cell debris. For
media mixture experiments, or for media mixed with 4 mg rhPSAP prepared in
serum-free unconditioned media, an equivalent volume of each was added to a 15-
ml conical tube and incubated for 1 h at 37 �C before clearing. Two 500ml aliquots
of each sample were concentrated to B25 ml using Amicon Ultra 0.5ml con-
centrators (50 kDa cutoff; Millipore) for 10min at 14,000g at room temperature.
Crosslinking was performed using BS3 (Thermo Scientific) prepared in water to
25mM. BS3 was added to concentrated conditioned media at a final concentration
of 1mM (or an equivalent volume of water for an uncrosslinked control) and
incubated for 1 h at room temperature. The reaction was quenched for 15min at
room temperature by adding 500mM Tris-HCl, pH 7.4 to a final concentration of
50mM before denaturing in an equivalent total volume of sample buffer as
described above.

Mutagenesis and luciferase activity assays. The pMirTarget firefly luciferase
expression vector containing the PSAP 30 UTR was purchased from Origene
(Rockville, MD). Introduction of the rs7869 rare variant SNP was achieved by
cloning the PSAP 30 UTR into pcDNA3.1 before utilizing the QuickChange
site-directed mutagenesis protocol (Agilent Technologies, Santa Clara, CA). Primer
information is available in Supplementary Table 4. The presence of the mutant was
verified by direct sequencing and the PSAP 30 UTR was cloned back into the
pMirTarget firefly luciferase expression vector. Wild-type or mutant firefly
luciferase constructs (1 mg) were co-transfected with pRL-CMV-renilla luciferase
(100 ng) into HeLa cells that were plated 1 day prior. The next day, firefly and
renilla luciferase activities (LAF and LAR, respectively) were measured in the same
samples in triplicate using the Dual-Luciferase Reporter Assay System (Promega,
Madison, WI) and a Veritas microplate luminometer. Relative luciferase activity
was quantified as LAF/LAR.

Constructs containing the PSAP coding sequence and 30 UTR were generated by
first cloning the PSAP coding sequence from PSAP-pAAV into the pcDNA3.1(þ )
vector (PSAP-pcDNA3.1). We then PCR-amplified the PSAP 30UTR from human
cDNA and inserted it into the PSAP-pcDNA3.1 plasmid using an internal BamHI
restriction site. Introduction of the rs7869 rare variant SNP was achieved by the
QuickChange site-directed mutagenesis protocol and primers (Supplementary
Table 4) as described above.

RNA isolation and quantitative PCR. Total RNA was extracted from transfected
HeLa cells or from 40mg of mouse brain cortical tissue using the RNeasy Plus
Mini Kit (Qiagen) or PureLink RNA mini kit (Life Technologies), respectively.
Using 300 ng RNA per sample as a template, a reverse transcription reaction
was performed using the Superscript III system (Life Technologies). Real-time
quantitative PCR using an ABI7900 was performed in triplicate for each sample
using Life Technologies human gene expression probes for GRN (Hs00963703_g1),
PSAP (Hs01551096_m1), GAPDH (Hs00266705_g1) and RPLP0 (Hs00420895_gh),

as well as mouse gene expression probes for Grn (Mm01245914_gl), Psap
(Mm00478338_ml), b-Actin (Mm01205647_gl) and Gapdh (Mm99999915_gl).
A GFP probe (Mr04097229_mr, Life Technologies) was used to ensure equal
transfection for the indicated co-transfection experiments. Results were analysed
using SDS software version 2.2 and relative quantities of GRN or PSAP mRNA
were determined.

Immunoprecipitation. HeLa cells were co-transfected with V5-tagged wild-type or
DCter PSAP-pAAV and untagged PGRN-pCMV-SPORT6, or with V5-tagged
PGRN-pcDNA6 and untagged wild-type or DCter PSAP-pAAV. Two days post
transfection, cell media was changed to serum-free and harvested for IP 24 h later.
Briefly, 10ml media was concentrated in a Amicon Ultra 15ml concentrator
(50 kDa cutoff) by centrifuging for 8min at 3,220g. Samples were brought up to
1ml with un-supplemented EMEM and 500 ml was used for IPs using Protein
G-coated Dynabeads (Life Technologies). The Dynabeads were pre-incubated with
2 mg anti-V5 antibody (ref. 46–0705, Life Technologies) or 2 mg of a mouse whole-
molecule IgG control (Jackson Laboratories) before IP. IP complexes were removed
from the beads by incubation in the provided elution buffer for 10min, after which
an equivalent amount of Novex sample buffer (5% b-mercaptoethanol) was added
and samples were heated 5min at 95 �C before removing the beads.

Statistics. For the genetic association analyses in the initial and replication
subjects cohorts, plasma PGRN concentration was normalized using an inverse
Gaussian normalization and the ‘genotype x trait’ association had been determined
using the additive variance component test as implemented in SOLAR (ref. 63).
To correct for possible confounding factors we used sex and age as covariates in
addition to the first three Principal Components. The components were pre-
calculated using the genotypic dosage of the founders and unrelated individuals in
our pedigree and were used to correct for unknown latent population stratification.

For all other experiments in which only two groups were compared, significance
was measured using a two-tailed Student’s t-test. For analyses involving more than
two groups, GraphPad Prism 5.04 (GraphPad Software) was utilized to perform a
one-way ANOVA followed by the Tukey’s multiple comparison post-hoc test.

Data availability. The T2D-GENES whole-genome sequence data set used in this
genetic association study has been deposited in dbGAP with the primary accession
code: phs000462.v1.p1. Detailed demographic information is only available on
request to the corresponding author since this information could compromise
research participant privacy or consent. Plasma PGRN data are also available from
the corresponding author on request. The authors declare that all other supporting
data supporting the findings of this study are available within the article and its
Supplementary Information Files or are available from the corresponding author
on request.
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