27 research outputs found

    Observations on the Fungi Associated with Esca and on Spatial Distribution of Esca-Symptomatic Plants in Apulian (Italy) Vineyards

    Get PDF
    The paper reports the results of observations on the fungi associated with deteriorated wood of esca affected vines and the spatial distribution of diseased plants in 21 vineyards located in Apulia (Southern Italy). Examination of over 43,000 plants revealed that the incidence of plants showing symptoms of esca was 12% (5-18%) in vineyards younger than 10 years and 22% (4-54%) in older ones. The most common deteriorations of the wood were a white rot of soft consistency and a dark brown discoloration of a hard consistency including longitudinal black streaks. Mycological analysis was carried out on 554 diseased vines from 5 vineyards. Phellinus sp. was frequently isolated from white rot, whereas Phaeoacremonium spp., Botryosphaeria spp. and Eutypa lata were more often isolated from dark brown tissues. Preliminary observations of maps of plants with symptoms of esca seem to indicate a tendency to aggregation, especially in young vineyards

    First Report of Pseudomonas Grapevine Bunch Rot Caused by Pseudomonas syringae pv. syringae .

    Get PDF
    Pseudomonas syringae pv. syringae, a Gammaproteobacterium belonging to genomospecies 2 within the P. syringae complex, is distributed worldwide, and it is responsible for bacterial canker on >100 different hosts, including the grapevine. P. syringae pv. syringae induces necrotic lesions in the leaf blades, veins, petioles, shoots, rachis, and tendrils on grapevine cultivars in different areas. P. syringae pv. syringae has been associated with severe economic losses in different grape cultivars in Australia, where it causes inflorescence rot. In midsummer to late summer 2017, symptoms of berry rots differing from those caused by the common berry rots agents were observed in different cultivar Red Globe vineyards of Apulia (southern Italy). As proven by fulfillment of Koch's postulates, these symptoms were caused by a bacterium that, according to the results of biochemical, physiological, nutritional, antimicrobial activity, and pathogenicity tests and sequencing of 16S ribosomal DNA, gyrB, rpoB, and rpoD genes, was identified as P. syringae pv. syringae. This is the first report of Pseudomonas grapevine bunch rot

    Dispersal of Philaenus spumarius (Hemiptera: Aphrophoridae), a Vector of Xylella fastidiosa, in Olive Grove and Meadow Agroecosystems

    Get PDF
    The introduction of the Xylella fastidiosa Wells bacterium into Apulia (South Italy) has caused the massive dieback of olive trees, and is threatening olive production throughout the Mediterranean Region. The key vector of X. fastidiosa in Europe is the spittlebug Philaenus spumarius L. The dispersal capabilities of P. spumarius are poorly known, despite being a key parameter for the prediction of the spread of the bacterium. In this study, we have examined the dispersal of P. spumarius adults in two different agroecosystems in Italy: an olive grove in Apulia (Southern Italy) and a meadow in Piedmont (Northern Italy). Insects were marked with albumin and released during seven independent trials over 2 yr. The recapture data were pooled separately for each agroecosystem and used to estimate the dispersal kernels of P. spumarius in the olive grove and in the meadow. The diffusion coefficient estimate for P. spumarius was higher in the meadow than in the olive grove. The median distance from the release point for 1 d of dispersal was 26 m in the olive grove and 35 m in the meadow. On the basis of our model, we estimated that 50% of the spittlebug population remained within 200 m (98% within 400 m) during the 2 mo period of high abundance of the vector on olives in Apulia. The dispersal of P. spumarius is thus limited to some hundreds of meters throughout the whole year, although it can be influenced to a great extent by the structure of the agroecosystem

    Spittlebugs of Mediterranean Olive Groves: Host-Plant Exploitation throughout the Year

    Get PDF
    Spittlebugs are the vectors of the bacterium Xylella fastidiosa Wells in Europe, the causal agent of olive dieback epidemic in Apulia, Italy. Selection and distribution of dierent spittlebug species on host-plants were investigated during field surveys in 2016–2018 in four olive orchards of Apulia and Liguria Regions of Italy. The nymphal population in the herbaceous cover was estimated using quadrat samplings. Adults were collected by sweeping net on three dierent vegetational components: herbaceous cover, olive canopy, and wild woody plants. Three species of spittlebugs were collected: Philaenus spumarius L., Neophilaenus campestris (Fallén), and Aphrophora alni (L.) (Hemiptera: Aphrophoridae). Philaenus spumarius was the predominant species both in Apulia and Liguria olive groves. Nymphal stages are highly polyphagous, selecting preferentially Asteraceae Fabaceae plant families, in particular some genera, e.g., Picris, Crepis, Sonchus, Bellis, Cichorium, and Medicago. Host-plant preference of nymphs varies according to the Region and through time and nymphal instar. In the monitored sites, adults peak on olive trees earlier in Apulia (i.e., during inflorescence emergence) than in Liguria (i.e., during flowering and beginning of fruit development). Principal alternative woody hosts are Quercus spp. and Pistacia spp. Knowledge concerning plant selection and ecological traits of spittlebugs in dierent Mediterranean olive production areas is needed to design eective and precise control strategies against X. fastidiosa vectors in olive groves, such as ground cover modifications to reduce populations of spittlebug vectors

    Specific SCAR Primers for Fungi Associated with Wood Decay of Grapevine

    Get PDF
    RAPD (Random Amplified Polymorphic DNA) analysis, a technique based on the polymerase chain reaction, was applied to explore variation in 178 isolates of Fomitiporia punctata, 94 of Phaeomoniella chlamydospora and 34 of Phomopsis viticola, selected as being representative of fungal populations from different vineyards and locations. The analysis showed a broad genetic variability in F. punctata and a very high genetic uniformity in P. chlamydospora. With P. viticola, isolates belonging to different vegetative compatibility groups were investigated; the analysis evidenced high genetic similarity among isolates within groups and broad inter-group variation. For each pathogen, specific RAPD markers were selected, cloned and sequenced. The obtained sequences were used to design sequence-characterised amplified region (SCAR) primers specific for each pathogen. These are being used to develop molecular diagnostic tools

    Phenology, seasonal abundance and stage-structure of spittlebug (Hemiptera: Aphrophoridae) populations in olive groves in Italy

    Get PDF
    Spittlebugs (Hemiptera: Aphrophoridae) are the dominant xylem-sap feeders in the Mediterranean area and the only proven vectors of Xylella fastidiosa ST53, the causal agent of the olive dieback epidemic in Apulia, Italy. We have investigated the structured population phenology, abundance and seasonal movement between crops and wild plant species of both the nymphal and adult stages of different spittlebug species in olive groves. Field surveys were conducted during the 2016–2018 period in four olive orchards located in coastal and inland areas in the Apulia and Liguria regions in Italy. The nymphal population in the herbaceous cover was estimated using quadrat samplings. Adults were collected through sweep nets on three different vegetational components: herbaceous cover, olive canopy and wild woody plants. Philaenus spumarius was the most abundant species; its nymphs were collected from early March and reached a peak around mid-April, when the 4th instar was prevalent. Spittlebug adults were collected from late April until late autumn. P. spumarius adults were abundant on the herbaceous cover and olive trees in late spring, and they then dispersed to wild woody hosts during the summer and returned to the olive groves in autumn when searching for oviposition sites in the herbaceous cover. A relatively high abundance of P. spumarius was observed on olive trees during summer in the Liguria Region. The present work provides a large amount of data on the life cycle of spittlebugs within an olive agroecosystem that can be used to design effective control programmes against these vectors in infected areas and to assess the risk of the establishment and spread of X. fastidiosa to Xylella-free areas

    Xylella fastidiosa in Olive: A Review of Control Attempts and Current Management

    Get PDF
    Since 2013, Xylella fastidiosa Wells et al. has been reported to infect several hosts and to be present in different areas of Europe. The main damage has been inflicted on the olive orchards of southern Apulia (Italy), where a severe disease associated with X. fastidiosa subspecies pauca strain De Donno has led to the death of millions of trees. This dramatic and continuously evolving situation has led to European and national (Italian and Spanish) measures being implemented to reduce the spread of the pathogen and the associated olive quick decline syndrome (OQDS). Research has been also carried out to find solutions to better and directly fight the bacterium and its main insect vector, Philaenus spumarius L. In the course of this frantic effort, several treatments based on chemical or biological substances have been tested, in addition to plant breeding techniques and integrated pest management approaches. This review aims to summarize the attempts made so far and describe the prospects for better management of this serious threat, which poses alarming questions for the future of olive cultivation in the Mediterranean basin and beyond

    Establishment of an experimental field to explore the differential olive cultivar response to Xylella fastidiosa infection

    Get PDF
    While different sources of natural resistance to Xylella fastidiosa (Xf) have been described in grapevines and citrus, lack of consolidated information exists on the wide panel of cultivars characterizing the vast olive germplasm. Preliminary observations on few cultivars, support the evidence that differential cultivar responses to Xf infections may exist. To explore the response of a larger panel of cultivars, in April 2015, an experimental olive plot, located within the Xf-heavily affected olive groves, was established in the Apulia Region (Italy). Twenty-four trees for each of the ten different cultivars were planted in randomized blocks. Each tree was caged with 15-20 specimens of Philaenus spumarius collected from the neighboring infected olive groves. Upon removing the cages, the trees are then continuously exposed to the natural vector populations occurring in the area. Nine and 12-months after planting, the trees were sampled, tested for Xf and inspected for symptoms. The first data confirmed the infectivity of the vector populations occurring in the Apulian contaminated area and the Xf susceptibility of the olive cultivars tested. Almost 50% of the trees tested positive, with an infection incidence ranging from 25% (Leccino) to 78% (Koroneiki). Symptoms of shoot dieback started to appear 1-year after planting, limitedly on few replicates of Cellina di Nardò. In April 2016, the number of cultivars has been increased up to 30. Periodical surveys for symptoms and quantitative analyses to monitor the differential bacterial titer and expression of target genes involved in the host response, are underway

    Usage of Molecular Markers (PCR-RAPD) for Studying Genetic Variability in «Phellinus» («Fomitiporia») sp.

    No full text
    PCR-RAPD was used to explore the genetic variability in Phellinus (Fomitiporia) sp. isolates from escaaffected vines. The use of 20 random primers yielded 180 polymorphic markers. Cluster-analysis grouped isolates by their origin, geographical location and host plant, but not by their tentative identification as Phellinus sp. or F. punctata. This shows that all isolates tested belonged to a single species, probably F. punctata. Observations carried out on samples of isolates representative of the population of Phellinus sp. present in each of two vineyards indicated that clonal plant-to-plant propagation of the fungus did not occur and that infections were probably caused by basidiospores. RAPD markers common to all tested isolates of Phellinus sp. (F. punctata), but never observed with other grape-associated fungi, were identified and are now being exploited to set up diagnostic techniques based on PCR or molecular probes

    Bioecological Traits of Spittlebugs and Their Implications for the Epidemiology and Control of the Xylella fastidiosa Epidemic in Apulia (Southern Italy)

    No full text
    Beyond Xylella, Integrated Management Strategies for Mitigating Xylella fastidiosa Impact in Europe (BeXyl) (Grant Agreement 101060593). Partner/Coordinador principal: Blanca B. Landa del Castillo, Investigadora Científica del Instituto de Agricultura Sostenible (IAS-CSIC).Spatial-temporal dynamics of spittlebug populations, together with transmission biology, are of major importance to outline the disease epidemiology of Xylella fastidiosa subsp. pauca in Apulian olive groves. The spread rate of X. fastidiosa is mainly influenced by (i) the pathogen colonization of the host plant; (ii) the acquisition of the pathogen by the vector from an infected plant, and its inoculation to healthy plants; (iii) the vector population dynamics and abundance at different spatial scales; and (iv) the dispersal of the vector. In this contribution we summarize the recent advances in research on insect vectors' traits-points ii, iii, and iv-focusing on those most relevant to X. fastidiosa epidemic in Apulia. Among the vectors' bioecological traits influencing the X. fastidiosa epidemic in olive trees, we emphasize the following: natural infectivity and transmission efficiency, phenological timing of both nymphal and adult stage, the role of seminatural vegetation as a vector reservoir in the agroecosystem and landscape, and preferential and directional dispersal capabilities. Despite the research on X. fastidiosa vectors carried out in Europe in the last decade, key uncertainties on insect vectors remain, hampering a thorough understanding of pathogen epidemiology and the development of effective and targeted management strategies. Our goal is to provide a structured and contextualized review of knowledge on X. fastidiosa vectors' key traits in the Apulian epidemic, highlighting information gaps and stimulating novel research pathways on X. fastidiosa pathosystems in Europe. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.Support was provided by the European Union's Horizon Europe Research and Innovation Program under the framework of the project BEXYL (Beyond Xylella, Integrated Management Strategies for Mitigating Xylella fastidiosa impact in Europe; grant 101060593).Peer reviewe
    corecore