71 research outputs found

    Accretion and Canal Impacts in a Rapidly Subsiding Wetland II. Feldspar Marker Horizon Technique

    Get PDF
    Recent (6–12 month) marsh sediment accretion and accumulation rates were measured with feldspar marker horizons in the vicinity of natural waterways and man-made canals with spoil banks in the rapidly subsiding environment of coastal Louisiana. Annual accretion rates in aSpartina alterniflora salt marsh in the Mississippi deltaic plain averaged 6 mm in marsh adjacent to canals compared to 10 mm in marsh adjacent to natural waterways. The rates, however, were not statistically significantly different. The average rate of sediment accretion in the same salt marsh region for a transect perpendicular to a canal (13 mm yr−1) was significantly greater than the rate measured for a transect perpendicular to a natural waterway (7 mm yr−1). Measurements of soil bulk density and organic matter content from the two transects were also different. This spatial variability in accretion rates is probably related to (1) spoil bank influences on local hydrology; and (2) a locally high rate of sediment input from lateral erosion associated with pond enlargement. In a brackish Spartina patens marsh on Louisiana’s Chenier plain, vertical accretion rates were the same along natural and canal waterways (3–4 mm yr−1) in a hydrologically restricted marsh region. However, the accretion rates for both waterways were significantly lower than the rates along a nonhydrologically restricted natural waterway nearby (11 mm yr−1). The vertical accretion of matter displayed semi-annual differences in the brackish marsh environment

    Marsh Management Plans in Practice: Do they work in coastal Louisiana, USA?

    Get PDF
    Louisiana\u27s coastal wetlands represent about 41% of the nation\u27s total and are extensively managed for fish, fur, and waterfowl. Marsh management plans (MMPs) are currently used to avoid potential user conflicts and are believed to be a best management practice for specific management goals. In this article, we define MMPs and examine their variety, history, impacts, and future. A MMP is an organized written plan submitted to state and federal permitting agencies for approval and whose purpose is to regulate wetland habitat quantity and quality (control land loss and enhance productivity). MMPs are usually implemented by making structural modifications in the marsh, primarily by using a variety of water control structures in levees to impound or semi-impound managed areas. It appears that MMPs using impoundments are only marginally successful in achieving and often contradict management goals. Although 20% of coastal Louisiana may be in MMPs by the year 2000, conflict resolution of public and private goals is compromised by a surfeit of opinion and dearth of data and experience. Based on interpretation of these results, we believe the next phase of management should include scientific studies of actual impacts, utilization of post-construction monitoring data, inventory of existing MMPs, development of new techniques, and determination of cumulative impacts

    Evaluating Restored Tidal Freshwater Wetlands

    Get PDF
    Tidal freshwater wetlands are recognized as highly productive coastal wetlands that support diverse assemblages of plants and animals and complex biogeochemical cycles (in this book, see Chapter 18 by Whigham et al. and Chapter 19 by Megonigal and Neubauer). Many tidal freshwater wetlands and their associated ecosystem services have been damaged or destroyed by urbanization, agriculture, and other human activities (Baldwin, 2004; Barendregt et al., 2006). Increasing recognition of the value of remaining wetlands and environmental regulations requiring wetland mitigation (i.e., enhancement, creation, or restoration of wetlands to compensate for wetland losses; Kentula, 2000) has driven the restoration of all types of wetlands, including tidal freshwater wetlands. These restoration projects have been increasingly studied by restoration ecologists, with the overarching goal of improving restoration approaches. In this chapter, we first review characteristics of restored tidal freshwater wetlands in North America and Eurasia, where most studies have been done, including their distribution, general construction methods, and motivating factors for restoration (Section 2). Then we present criteria for evaluating tidal freshwater wetland restoration projects (Section 3). Next we describe a case study of restored tidal freshwater wetlands in the Anacostia River watershed in Washington, DC, USA (Section 4). Finally, we provide conclusions and recommendations to increase the successful restoration of tidal freshwater wetlands (Section 5)

    Coastal Wetlands: an integrated ecosystem approach

    Get PDF
    Coastal Wetlands, Second Edition: An Integrated and Ecosystem Approach provides an understanding of the functioning of coastal ecosystems and the ecological services that they provide. As coastal wetlands are under a great deal of pressure from the dual forces of rising sea levels and the intervention of human populations, both along the estuary and in the river catchment, this book covers important issues, such as the destruction or degradation of wetlands from land reclamation and infrastructures, impacts from the discharge of pollutants, changes in river flows and sediment supplies, land clearing, and dam operations

    Sediment transport-based metrics of wetland stability

    Get PDF
    © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Geophysical Research Letters 42 (2015): 7992–8000, doi:10.1002/2015GL065980.Despite the importance of sediment availability on wetland stability, vulnerability assessments seldom consider spatiotemporal variability of sediment transport. Models predict that the maximum rate of sea level rise a marsh can survive is proportional to suspended sediment concentration (SSC) and accretion. In contrast, we find that SSC and accretion are higher in an unstable marsh than in an adjacent stable marsh, suggesting that these metrics cannot describe wetland vulnerability. Therefore, we propose the flood/ebb SSC differential and organic-inorganic suspended sediment ratio as better vulnerability metrics. The unstable marsh favors sediment export (18 mg L−1 higher on ebb tides), while the stable marsh imports sediment (12 mg L−1 higher on flood tides). The organic-inorganic SSC ratio is 84% higher in the unstable marsh, and stable isotopes indicate a source consistent with marsh-derived material. These simple metrics scale with sediment fluxes, integrate spatiotemporal variability, and indicate sediment sources.U.S. Geological Survey Coastal and Marine Geology Program; Global Change and Land Use Progra

    Sea level and turbidity controls on mangrove soil surface elevation change

    Get PDF
    Increases in sea level are a threat to seaward fringing mangrove forests if levels of inundation exceed the physiological tolerance of the trees; however, tidal wetlands can keep pace with sea level rise if soil surface elevations can increase at the same pace as sea level rise. Sediment accretion on the soil surface and belowground production of roots are proposed to increase with increasing sea level, enabling intertidal habitats to maintain their position relative to mean sea level, but there are few tests of these predictions in mangrove forests. Here we used variation in sea level and the availability of sediments caused by seasonal and inter-annual variation in the intensity of La Nina-El Nino to assess the effects of increasing sea level on surface elevation gains and contributing processes (accretion on the surface, subsidence and root growth) in mangrove forests. We found that soil surface elevation increased with mean sea level (which varied over 250 mm during the study) and with turbidity at sites where fine sediment in the water column is abundant. In contrast, where sediments were sandy, rates of surface elevation gain were high, but not significantly related to variation in turbidity, and were likely to be influenced by other factors that deliver sand to the mangrove forest. Root growth was not linked to soil surface elevation gains, although it was associated with reduced shallow subsidence, and therefore may contribute to the capacity of mangroves to keep pace with sea level rise. Our results indicate both surface (sedimentation) and subsurface (root growth) processes can influence mangrove capacity to keep pace with sea level rise within the same geographic location, and that current models of tidal marsh responses to sea level rise capture the major feature of the response of mangroves where fine, but not coarse, sediments are abundant

    Processes Contributing to Resilience of Coastal Wetlands to Sea-Level Rise

    Get PDF
    The objectives of this study were to identify processes that contribute to resilience of coastal wetlands subject to rising sea levels and to determine whether the relative contribution of these processes varies across different wetland community types. We assessed the resilience of wetlands to sea-level rise along a transitional gradient from tidal freshwater forested wetland (TFFW) to marsh by measuring processes controlling wetland elevation. We found that, over 5 years of measurement, TFFWs were resilient, although some marginally, and oligohaline marshes exhibited robust resilience to sea-level rise. We identified fundamental differences in how resilience is maintained across wetland community types, which have important implications for management activities that aim to restore or conserve resilient systems. We showed that the relative importance of surface and subsurface processes in controlling wetland surface elevation change differed between TFFWs and oligohaline marshes. The marshes had significantly higher rates of surface accretion than the TFFWs, and in the marshes, surface accretion was the primary contributor to elevation change. In contrast, elevation change in TFFWs was more heavily influenced by subsurface processes, such as root zone expansion or compaction, which played an important role in determining resilience of TFFWs to rising sea level. When root zone contributions were removed statistically from comparisons between relative sea-level rise and surface elevation change, sites that previously had elevation rate deficits showed a surplus. Therefore, assessments of wetland resilience that do not include subsurface processes will likely misjudge vulnerability to sea-level rise

    Processes Contributing to Resilience of Coastal Wetlands to Sea-Level Rise

    Get PDF
    The objectives of this study were to identify processes that contribute to resilience of coastal wetlands subject to rising sea levels and to determine whether the relative contribution of these processes varies across different wetland community types. We assessed the resilience of wetlands to sea-level rise along a transitional gradient from tidal freshwater forested wetland (TFFW) to marsh by measuring processes controlling wetland elevation. We found that, over 5 years of measurement, TFFWs were resilient, although some marginally, and oligohaline marshes exhibited robust resilience to sea-level rise. We identified fundamental differences in how resilience is maintained across wetland community types, which have important implications for management activities that aim to restore or conserve resilient systems. We showed that the relative importance of surface and subsurface processes in controlling wetland surface elevation change differed between TFFWs and oligohaline marshes. The marshes had significantly higher rates of surface accretion than the TFFWs, and in the marshes, surface accretion was the primary contributor to elevation change. In contrast, elevation change in TFFWs was more heavily influenced by subsurface processes, such as root zone expansion or compaction, which played an important role in determining resilience of TFFWs to rising sea level. When root zone contributions were removed statistically from comparisons between relative sea-level rise and surface elevation change, sites that previously had elevation rate deficits showed a surplus. Therefore, assessments of wetland resilience that do not include subsurface processes will likely misjudge vulnerability to sea-level rise

    Hurricane Mitch: Impacts on Mangrove Sediment Elevation Dynamics and Long-term Mangrove Sustainability

    Get PDF
    Hurricane Mitch left three very different impacts on mangroves in the coastal zone of Central America. First, in the Caribbean, direct wind and flood-induced mangrove mortality was seen in the Bay Islands. Second, wave-induced erosion of beaches and subsequent sediment deposition buried mangrove forests of Punta de Manabique, Guatemala. Finally, along the Pacific coast, some mangroves of the Gulf of Fonseca were buried under up to 100 cm of sediments eroded from uplands and carried down slope by river flooding. Each of these three impacts left a different footprint on the mangrove communities, and these communities are expected to follow different recovery trajectories. These time-dependent responses will lead to different rates of success at reaching prehurricane conditions and imply differences in mangrove forest sustainability in face of a constantly changing environment. Rising sea level, for example, might make Caribbean mangroves more susceptible to hurricane-induced elevation deficits

    Sediment transport-based metrics of wetland stability

    Get PDF
    Despite the importance of sediment availability on wetland stability, vulnerability assessments seldom consider spatiotemporal variability of sediment transport. Models predict that the maximum rate of sea level rise a marsh can survive is proportional to suspended sediment concentration (SSC) and accretion. In contrast, we find that SSC and accretion are higher in an unstable marsh than in an adjacent stable marsh, suggesting that these metrics cannot describe wetland vulnerability. Therefore, we propose the flood/ebb SSC differential and organic-inorganic suspended sediment ratio as better vulnerability metrics. The unstable marsh favors sediment export (18mgL(-1) higher on ebb tides), while the stable marsh imports sediment (12mgL(-1) higher on flood tides). The organic-inorganic SSC ratio is 84% higher in the unstable marsh, and stable isotopes indicate a source consistent with marsh-derived material. These simple metrics scale with sediment fluxes, integrate spatiotemporal variability, and indicate sediment sources
    • …
    corecore