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Increases in sea level are a threat to seaward fringing mangrove forests if levels of inundation exceed the
physiological tolerance of the trees; however, tidal wetlands can keep pace with sea level rise if soil
surface elevations can increase at the same pace as sea level rise. Sediment accretion on the soil surface
and belowground production of roots are proposed to increase with increasing sea level, enabling
intertidal habitats to maintain their position relative to mean sea level, but there are few tests of these
predictions in mangrove forests. Here we used variation in sea level and the availability of sediments
caused by seasonal and inter-annual variation in the intensity of La Nina-El Nino to assess the effects of
increasing sea level on surface elevation gains and contributing processes (accretion on the surface,

Keywords:
Avicenna marina
Rhizophora stylosa

sedimentation - - ) e :
subsidence subsidence and root growth) in mangrove forests. We found that soil surface elevation increased with
subtropical mean sea level (which varied over 250 mm during the study) and with turbidity at sites where fine

sediment in the water column is abundant. In contrast, where sediments were sandy, rates of surface
elevation gain were high, but not significantly related to variation in turbidity, and were likely to be
influenced by other factors that deliver sand to the mangrove forest. Root growth was not linked to soil
surface elevation gains, although it was associated with reduced shallow subsidence, and therefore may
contribute to the capacity of mangroves to keep pace with sea level rise. Our results indicate both surface
(sedimentation) and subsurface (root growth) processes can influence mangrove capacity to keep pace
with sea level rise within the same geographic location, and that current models of tidal marsh responses
to sea level rise capture the major feature of the response of mangroves where fine, but not coarse,
sediments are abundant.

Moreton Bay

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Increases in sea level have strongly influenced mangroves in the
past (Woodroffe, 1995) and are a threat to current mangrove dis-
tributions if mangrove soil elevation cannot keep pace with sea
level rise (Lovelock et al., 2007; Gilman et al., 2008; Day et al,,
2008). Although losses of tidal wetlands are widely anticipated
with sea level rise (Nicholls et al., 1999), over a range of plausible
sea level rise scenarios coastal wetlands are proposed to adjust
towards an equilibrium position, keeping pace with sea level due to
a number of feedbacks that allow them to maintain their soil
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elevation relative to the height of mean tide (Allen, 2000; Morris
et al,, 2002; Kirwan and Murray, 2007; D'Alpaos et al., 2007). Ac-
cretion of material on the soil surface, often through sedimentation,
leads to increases in soil surface elevation that can result in the
wetland maintaining its relative position in the intertidal with sea-
level rise (Allen, 2000). Sedimentation increases with the avail-
ability of suspended sediments in tidal waters. A wide range of
factors determine the level of suspended sediments in the water
column, these include runoff from the land associated with rainfall
and river flows, and resuspension of sediments by turbulence
caused by wind and waves and tidal currents (see Figure S1 for the
conceptual framework modified from Allen, 2000). Additionally,
sedimentation increases with the duration and depth of tidal
inundation due to increases in the amount of material delivered
(e.g. French and Stoddard, 1992; Furukawa and Wolanski, 1996;
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Cahoon et al.,, 2006; Adame et al., 2010). Sediment and organic
matter are trapped due to the aboveground structures of mangrove
forests (e.g. stems, aboveground roots) which reduce the velocity of
tidal flows thereby enhancing retention of sediment and organic
material within the wetland (Furukawa and Wolanski, 1996; Allen,
2000). The depth and duration of tidal flooding of mangrove forests
is determined by the position of the forest in the intertidal zone, but
is also influenced by variations in sea level (Rogers et al., 2014).
Thus, both variation in sediment availability and sea level can in-
fluence gains in soil surface elevation in mangrove forests.

Accumulation of plant biomass can also contribute to increases
in soil surface elevation through accumulation of surface organic
matter and roots that increase soil volume (McKee, 2011). In-
creases in soil surface elevation of mangrove forests have been
observed with increases in root growth due to fertilization (McKee
et al.,, 2007) and during forest regeneration (Rogers et al., 2005).
Conversely, losses in surface elevation have been observed with
death of trees (Krauss et al, 2014). Numerical models have
explored the potential role of plant production and sediment in-
puts in maintaining soil elevation with sea level rise. In tidal
marshes where plant production is important for soil elevation
gains, Morris et al. (2002) predicted that there is an optimal rate of
sea level rise at which the equilibrium elevation and depth of tidal
flooding is optimal for plant growth and soil elevation gain.
However, the optimum was observed to be at the upper limit of
the tidal range, such that with high rates of sea level rise the plant
community could not sustain an elevation that was within the
range of the physiological tolerance of the plants (Morris et al.,
2002). In contrast, in marshes where sediments are abundant
marsh surface elevation was predicted to be maintained at equi-
librium elevation at approximately mean sea level as long as the
amount of sediments delivered in tidal flows were sufficiently
high (Temmerman and Govers, 2004). Kirwan and Murray (2007),
in their three dimensional model that included tidal creeks as well
as the marsh platform, predicted that an increase in the rate of
sea-level rise would increase rates of sediment deposition and
biomass productivity that would lead to a metastable state, but if
marshes were disturbed or the vegetation died marshes would
rapidly degrade, widening creeks and channels. In addition to
marshes, mangrove forests are highly vulnerable to sea level rise,
yet there are few tests of the roles of plant production and sedi-
ment availability on the maintenance of soil surface elevation with
sea level rise in these widespread and important tropical and
subtropical ecosystems.

In mangrove forests in Belize that grow in sediments comprised
of peat, observations from deep cores have found that soil surface
elevation kept up with high rates of sea level rise in the early Ho-
locene, but have slowed in concert with slowing sea level rise later
in the Holocene (McKee et al., 2007). Additionally, mangrove forests
occurring at sea level are currently accreting at a similar rate as sea
level rise, while those lower in the intertidal, where growth rates
are very low, are not keeping pace (McKee et al., 2007), conforming
to many of the predictions of the Morris et al. (2002) and Kirwan
and Murray (2007) models. In mangrove forests in settings with
high sediment supply, the equilibrium models suggest that
increasing sea level will enhance rates of sediment deposition,
which would lead to soil surface elevation gains as observed by
Temmerman and Govers (2004) in tidal marshes. But productivity
of the plant community may also be important in these settings
(Rogers et al., 2005; Kirwan and Murray, 2007; Kirwan and
Guntenspergen, 2012). An improved understanding of the impor-
tance of sediment availability and mangrove plant production in
maintaining soil surface elevation with sea level rise is needed in
order to guide management of the coastal zone, particularly man-
agement of sediments and nutrients, and for planning coastal

landscapes for accommodation of mangrove forests with acceler-
ating sea level rise (Runting et al., 2013).

In Moreton Bay, Queensland, Australia, sea level and suspended
sediments in coastal waters varies due to seasonal influences of
tides, rainfall and river flows and with variation in the strength of
El Nino Southern Oscillation (ENSO) cycles. On the east coast of
Australia, El Nino events, where atmospheric pressure differentials
across the Pacific Ocean cause an accumulation of water mass in
the eastern Pacific (Aubrey and Emery, 1986; Feng et al., 2008),
result in lower than normal sea levels, as well as reduced rainfall
and other climatic changes. In Europe the North Atlantic Oscilla-
tion (NAO) has been shown to have a strong influence on salt
marshes through its effects on water levels and waves (Kim et al.,
2013). In this study we investigate the influence of sea level and
turbidity, which correlates strongly with suspended sediments
within Moreton Bay (Hossain et al., 2004), on surface elevation
change. In the subtropics growth of mangrove trees is highly
seasonal (Mackay et al., 1993; Rogers et al., 2005, 2014), thus we
used seasonal variation in plant growth to assess the role of root
production in maintaining soil elevation. We tested three
hypotheses:

1. Soil surface elevation gains of mangroves in Moreton Bay will
increase during periods of higher sea-level and high turbidity
and decrease in periods with lower sea level and low turbidity.

2. Soil surface elevation gains during periods of higher sea level
and turbidity are correlated with increases in accretion of sed-
iments on the soil surface.

3. Soil surface elevation gains are positively influenced by in-
creases in root growth.

2. Methods
2.1. Site description

Our experimental sites lie within Moreton Bay, Queensland,
which is a large semi-open embayment on the east coast of
Australia (Fig. 1). It is bound on the eastern side by sand islands that
reach approximately 200 m in elevation and by a deltaic coast on
the western side in which five rivers flow from their catchments to
the bay. The city of Brisbane which is one of the fastest growing
cities in Australia, with a population of 2.15 million people
(Australian Bureau of Statistics, 2011) resides on the western side of
Moreton Bay. The bay is fringed by mangroves positioned lower in
the intertidal zone with salt marsh and cyanobacterial mats adja-
cent in the high intertidal zone. The mangroves and salt marsh
provide a range of ecosystem services in the region, from amenity
for recreation to the support of species important for commercial
fisheries of the Bay (Meynecke et al., 2008). The mangrove forests of
Moreton Bay are dominated by Avicennia marina on the western
side of the Bay, but have a high abundance of Rhizophora stylosa in
the eastern Bay (Dennison and Abal, 1999).

Within Moreton Bay, the long term rate of sea-level rise is
1.982 mm/year (tide gauge on Bishop Island at the mouth of the
Brisbane River from 1984 to 2011, GLOSS number 58, Lovelock et al.,
2011), which is similar to the global average sea-level rise of
1.7 mm/year (Church and White, 2006). Estimated long-term
(5 x 107 years) changes in the elevation of the Australian coast is
very small (Aubrey and Emery, 1986) and was therefore not
considered in our analyses. Moreton Bay is subtropical with semi-
diurnals tides (mean range of 2 m, Dennison and Abal, 1999).
Mean annual minimum air temperature is 15.5 °C and mean
maximum is 25.3 °C. Wind speed varies over the year with maxi-
mums from September to January and lower values from April to
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Fig. 1. Map of the location of the study sites within Moreton Bay, Queensland, Australia. Surface elevation table sites are marked with a filled circle and turbidity monitoring sites

with crosses.

September. Mean annual rainfall in Moreton Bay is 1050 mm/year
(Australian Bureau of Meteorology, Brisbane Airport station, record
from 1949 to 2000, http,//www.bom.gov.au/) but rainfall is sea-
sonal with the highest rainfall in the warmer months (November to
March, 95—175 mm/month) and lower rainfall in the cooler months
(April—October, 35—90 mm/month). Heavy rainfall events lead to
sediment delivery through rivers and creeks to Moreton Bay
(Dennison and Abal, 1999). Additionally, in Australia, ENSO strongly
influences sea level (Aubrey and Emery, 1986; Feng et al., 2008) and
rainfall (Hughes, 2003). Extreme El Nino events can give rise to
reductions in sea level that can be up to 44 cm below mean sea level
(recorded in Guam), which influences a range of ecological pro-
cesses (Glynn, 1988). On the east coast of Australia El Nino (when
the Southern Oscillation index, SOI is low), sea levels are low and
lower than normal rainfall results in drought conditions. In
contrast, during la Nina phases, sea levels are higher and rainfall is
also higher, with concomitant increases in the availability of sus-
pended sediment in coastal waters (Wolanski et al., 2008).

The mangrove forests of Moreton Bay are exposed to variable
environmental conditions due to variable geomorphology within
the bay and natural variation in climate and sea level and the in-
fluence of the city of Brisbane. On the western shore (near the city
of Brisbane), mangrove forests grow on fine sediments (Morelli et
al., 2012) that have high organic carbon contents (8%)and bulk
density 0.46—0.55 g cm > (Lovelock et al., 2014). These forests are
exposed to freshwater inputs associated with creeks and rivers, as
well as sediments and nutrients from flood plumes that are trapped

in-shore by the prevailing south east winds and currents (Dennison
and Abal, 1999). Additionally, wind driven waves resuspend fine
sediments, increasing suspended sediment concentrations in the
western bay (You, 2005). In contrast, on the eastern shores (on the
shores of the high sand islands), mangroves grow in sandy sedi-
ments where turbidity and nutrients are low, similar to oceanic
conditions, and tidal currents are strong (Dennison and Abal, 1999).
Sediments in the eastern bay have a bulk density of approximately
1 g cm 3 and an organic carbon content of 1% (Lovelock et al., 2014).
Over the duration of our experiment, variation in rainfall, stream
flow to the bay, sea level and the turbidity of the bay waters were
high (Supplementary material Figure S2).

2.2. Surface elevation gains

We measured mangrove surface elevation with the rod surface
elevation table — marker horizon (RSET-MH) approach developed
by Cahoon et al. (2002a and b). Eighteen RSET-MH stations were
installed in mangrove forests between February and June of 2007
and monitored until 2012. Three sites were chosen on both the
eastern and western bay. Western bay sites were located within the
Tinchi Tamba Wetlands Reserve (Brisbane City Council), Nundah
Creek (Boondall Wetlands Park) and in the south at Halloran
Reserve (Redlands Shire Council) (Lovelock et al., 2011). At each site
three RSET-MHs were installed in the mangrove forests fringing the
creek, within 20 m of the creek bank and 30—50 m apart. Mangrove
forests at Tinchi Tamba and Nundah Creek were comprised of
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Avicennia marina trees that were 10—13 m in height. Avicennia
marina was dominant at Halloran Reserve, though Rhizophora sty-
losa was abundant. In the eastern bay three sites were chosen along
the western side of North Stradbroke Island. Two sites were north
of the town of Dunwich, between Myora Light and Amity Point
(Amity North and Amity South) and one was south of Dunwich
(Adams Beach). RSET-MH stations were within 30—50 m of the
shoreline and at least 50 m apart. In the eastern bay mangrove
forests were 10—15 m in height and were comprised of both
A. marina and R. stylosa. During RSET installation benchmark rods
were driven to refusal. The depth to which they were driven was
variable on the western bay (from 4 m rods hit bed rock to 15 m at
Tinchi Tamba). In the eastern bay rods were driven to a uniform
depth of 12 m. The vertical position of each RSET-MH within the
intertidal zone was determined by measuring the water depth
covering the site at high tide using dyed cotton strips as recorders,
which were deployed temporarily on stakes at the site (English
et al,, 1997). Sites on the eastern bay were lower in the intertidal
than those on the western bay, with a position of 1.36 + 0.01 m
relative to the lowest astronomical tide (LAT, ~0.09 m above mean
sea level) compared to 1.87 + 0.06 m relative to LAT (0.6 m above
mean sea level) in the western bay. In the western bay mangroves
occur within estuaries (associated with tidal creeks), while in the
east the mangroves form a band along the shore.

We assessed changes in soil surface elevation over each mea-
surement interval at each RSET as the mean of 36 measurements
made over four cardinal directions around the RSET benchmark and
then expressed as a rate of change per month. For the first 18
months of the study RSET-MHs were measured every 3—4 months
after which sampling intervals were lengthened to approximately 6
months to encompass the winter, dry (April-November) and
summer, wet seasons (November—April). We evaluated the mean
rates of change for each RSET from April 2007 to November, 2011,
which encompassed variation in the SOI (Figure S2), by fitting a
linear regression over time to observations for the 12 measurement
intervals. Mean coefficient of determination (R?> + SE) for the
regression of surface elevation change over time for individual
RSETs was 0.713 + 0.05.

Vertical surface accretion was assessed at the same time as
surface elevation by measuring the depth of sediment over a white
powdered feldspar clay layer that in the marker horizon which
accompanied each RSET (Cahoon and Turner, 1989). Marker hori-
zons were sampled using a small (1.5 cm diameter) transparent
corer. Three cores per marker horizons were extracted. On each
core, three measurements (equidistant around the core) of the
sediment depth accreted on top of the marker horizon were made
using a ruler giving nine measurements, which were averaged per
RSET station and normalized to an accretion rate per month for
each measurement interval. Shallow subsidence was calculated as
surface accretion minus surface elevation change. Thus, if surface
elevation change is mainly due to surface accretion, the values of
surface elevation and surface accretion will be approximately the
same; if surface elevation change exceeds surface accretion, then
subsurface expansion is occurring, and conversely, if surface
elevation is less than surface accretion, shallow subsidence (auto-
compaction) over the depth of the benchmark is occurring.

Digital sea level data for Moreton Bay was obtained from https//
www.bodc.ac.uk for station PSM 21764 on Bishop Island at the
mouth of the Brisbane River (GLOSS number 58). We calculated the
anomaly in sea level in each of our measurement periods from 2007
to 2012, as the difference between the mean sea level during the
measurement period and the mean sea level between 1984 and
2012. The sea level anomaly varied between -34 mm
and +150 mm (see Supplementary material Figure S2). Turbidity,
expressed as Nephelometric Turbidity Units (NTU), of the coastal

waters for Moreton Bay was available from the Environmental
Health Monitoring Program (EHMP, Queensland Government).
Mean turbidity of EHMP monitoring stations that were closest to
our study sites (Fig. 1) were obtained for each of the measurement
intervals during the study period. Values used in the analysis were
means for three EHMP stations on either side of the bay (west
stations 4500, 900 and 922; east stations 502 and 531).

2.3. Root production

Root production was measured using five root ingrowth bags per
RSET plot (McKee et al., 2007) at two measurement intervals (wet
period from Nov 2010 to May 2011 and a dry period from May 2011
until November 2011). In-growth bags were 5 cm in diameter and
20 cm long, made of nylon mesh (2 mm) and filled with root-free
natural sediment or material closely approximating the natural
sediments. Root bags were filled with sand obtained at the RSET
sites in the eastern bay and filled bags with commercial peat moss
and coconut fibre packed to a dry bulk density measured as
0.12 g cm~ in the western side of the bay. The bulk density of the
peat moss mix was lower than the natural organic soils
(~0.4 g cm3), but we chose this approach as we could not obtain
naturally root-free mangrove soil in the western bay without major
disturbance to the sites. Root bags were collected after six months
and roots extracted by wet sieving over a 1 mm mesh. Roots were
dried at 60 °C and weighed to give a total root biomass per root bag.
The volume of fresh roots was assessed by volume displacement of
water using graduated cylinders for a subset of the root samples. The
relationship between root weight and root volume where root
volume (cm?) = (root weight (g) x 11.932) — 0.0792 was used to
calculate the root volume produced over each sampling interval.
The volume of roots produced per unit soil surface area (20.25 cm?
area of root bag) was converted to potential contribution to soil
elevation gain as volume of roots divided by surface area of root bag.

2.4. Data analyses

We used regression analyses to assess the relationship between
the Southern Oscillation Index (SOI) and the sea level anomaly in
Moreton Bay. To assess the relationships among 1) sea level
anomaly and turbidity; 2) sea level anomaly and soil surface
elevation and surface accretion; and 3) turbidity and soil surface
elevation and surface accretion we used analysis of co-variance,
where the factor “bay” (eastern or western bay) was included as
a fixed effect in the model. Data consisted of measurements for
each RSET installation for each time interval (12 intervals with
measurements of 9 RSET on either side of the bay). We used a
repeated measures, nested ANOVA to test for differences in soil
surface elevation change and surface accretion over seasons using
five years of data where both wet and dry season data were avail-
able. In the model, “bay” and “season” were fixed effects in the
model and with “sites” (random) nested in “bay”. We analysed
differences in the slope of the cumulative change in soil elevation
with a nested ANOVA where “bay” was a fixed effect in the model
and with “sites” (random) nested in “bay”. Differences in root
production across the bay and between measurement intervals
were assessed using nested ANOVA, where sites were nested
within the factor “bay”. Significant differences between means
were assessed using least significant difference tests. Analysis of
the relationship between the contribution of root volume to soils
and soil subsidence over seasons and with location in the bay was
done using ANCOVA, where the contribution of root volume to soils
was a continuous random variable and “season” and “bay” were
fixed effects in the model. Homogeneity of the variances of the data
was assessed using Levene tests. Root production and turbidity
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(NTU) were log transformed prior to analysis to satisfy the homo-
geneity of variance criteria when using linear models. All analyses
were performed using the statistical package Data Desk 7 (Data
Descriptions Inc., Ithaca, NY).

3. Results

The mean sea level anomaly in Moreton Bay was correlated with
the mean SOI for each measurement interval, although in some
measurement intervals mean sea level was much lower than
described by the regression (Supplementary materials Figure S3).
Additionally, the mean sea level anomaly and cumulative rainfall
for each measurement period had a significant positive relationship
with the turbidity of coastal water close to our sites in the western
bay, but not in the eastern bay (Supplementary materials, Figure S4,
Sea level anomaly x bay interaction, F 168 = 5.174, P = 0.021;
rainfall x bay interaction, F 163 = 6.042, P = 0.016), reflecting the
co-variation of rainfall and the sea level anomaly with turbidity.

Mean soil surface elevation gains at our sites over the entire
monitoring period (2007—2012) were significantly higher in the
eastern bay compared to the western bay (Table 1, factor bay,
F14 = 31.88, P = 0.0048). Surface elevation gains tended to vary
with season, although more strongly in some years than others
(season x year interaction F 416 = 3.467, P = 0.032). There was
significant variation in surface elevation gains among sites (F
4.96 = 4.250, P = 0.009) that also varied in strength among the years
of the study (sites x year x season interaction, Figgs = 3.933,
P < 0.0001). Analysis of the effect of seasonality on surface accre-
tion over the study found that accretion was higher in the wet/
warm season than in the dry/cool season (F 16 = 8.947, P = 0.0403),
the strength of this trend varied among years (season x year
interaction F416 = 7.357, P = 0.0015), but the side of the bay was not
a significant factor determining rates of surface accretion.

Over the duration of the study, surface elevation gains were
positively related to the sea level anomaly in the western bay, but
not in the eastern bay (Fig. 2, Sea level anomaly x bay interaction,
F1197 = 9.313, P = 0.003). Surface accretion above the marker ho-
rizons was also significantly positively related to the sea level
anomaly, but this was not statistically different on either side of the
bay (Fig. 3, sea level anomaly, F;192 = 8.096, P = 0.005).

Assessment of the effect of variation in turbidity on soil surface
elevation gains and surface accretion found that as turbidity

Table 1

Mean rates of soil surface elevation change, surface accretion over the entire study
(N =9) and seasonally (N = 45), and root production (N = 9) (+standard error) for
mangrove forests in the western and eastern Moreton Bay, Queensland between
2007 and 2012. Root production (g m—2 mo~!) was measured in root bags deployed
in the top 20 cm of soil in either the dry season or wet season of 2011. Different
letters after the mean for each row indicate values are significantly different at
P < 0.05 determined using a least significant difference test.

Western bay Eastern bay

Cumulative rates (mm y ')

Mean surface elevation change

Mean surface accretion

Surface elevation change (mm mo—")

5.78 + 0.71°
7.95 + 0.76%

1.72 + 0.53°
9.23 + 1.00*

Dry season 0.010 + 0.029? 0.208 + 0.036°
Wet season 0.200 + 0.050° 0.201 + 0.046°
Surface accretion (mm mo—!)

Dry season 0.254 + 0.037° 0.263 + 0.071°
Wet season 0.542 + 0.047° 0.403 + 0.079°
Shallow subsidence (mm mo~")

Dry season 0.228 + 0.039* 0.048 + 0.079°
Wet season 0.287 + 0.053° 0.206 + 0.009°
Root production (g m~2 mo~")

Dry season 29+ 09° 16.6 + 1.6°
Wet season 18.8 + 5.8° 84.2 + 3.3¢

increased soil surface elevation (Fj197 = 13.529, P = 0.0003) and
accretion on the soil surface (Fi192 = 4.006, P = 0.0468) also
increased, but the data were highly variable about these relation-
ships (Fig. 4).

We tested whether surface accretion could account for the gains
in soil surface elevation across the study sites (Fig. 5). We found a
weak but significant positive relationship among soil surface
elevation gains and surface accretion in the western bay, but no
significant relationship in the eastern bay (bay x accretion inter-
action Fy 191 =9.415, P= 0.0025, Fig. 5A). Additionally we found that
surface elevation gains were significantly negatively related to
shallow subsidence on both sides of the bay (Fii96 = 51.389,
P < 0.0001, Fig. 5B).

We assessed the potential contribution that root production
could make to surface elevation gains by assessing root volume
increases in root ingrowth bags during two measurement periods.
We found that mean root production (g m—? mo~') was higher in
the eastern bay than in the western bay (F1 4 = 35.3, P = 0.0040) and
higher in the wet/warm period compared to the cool/dry period
(F1.4=43.7, P =0.0027) (Table 1). Root production in the top 20 cm
of soil could account for the maintenance of up to 13 mm year~' of
surface elevation gain in the eastern bay compared to 6 mm year™!
in the western bay (Fig. 6). Potential root contributions to surface
elevation in the dry period were much lower than measured in the
wet period, particularly in the western bay. We did not find a
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Fig. 2. The relationship between soil surface elevation gain and the sea level anomaly
in the western (panel A), and eastern bay (panel B). The regression line in panel A is of
the form Y = —0.0186 + 0.00218 * X, R? = 0.133, P = 0.0002. There was no significant
relationship in panel B.
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Fig. 3. Relationship between soil surface accretion and sea level anomaly in the
western (filled circles) and eastern bay (open circles). The regression line for all data is
of the form, Y = 0.255 + 0.00195 * X, R? = 0.040, P = 0.005.

significant relationship between root production and soil surface
elevation gains across our sites in the two measurement intervals of
our root growth study, however we observed that root production
negatively associated with subsidence such that when root pro-
duction increased subsidence decreased (Table 1, Fig. 7). The rela-
tionship between the root contributions to soil volume and
subsidence was significantly influenced by season and side of the
bay (season x root contributions x bay interaction, Fy,s = 6.210,
P = 0.0189) indicating that reductions in root contributions have a
greater effect on subsidence in the dry season than the wet season
and in the western than the eastern bay.

4. Discussion

The increase in soil surface accretion and elevation with
increasing size of the sea level anomaly and with high levels of
turbidity in the western bay is consistent with models of increasing
wetland soil elevation with increasing sediment availability and sea
level (Allen, 2000; Temmerman and Govers, 2004; Kirwan and
Murray, 2007), although these relationships are based on correla-
tions and thus should be interpreted cautiously. The high level of
variation about the linear relationships likely reflects differences
among sites in the depth of flooding (Adame et al., 2010; Lovelock
et al., 2011), site to site variation in hydrology, which influences the
velocity of tidal flows, and variation in grain size of sediments and
trapping efficiency of sediment by the vegetation structure (Kirwan
and Murray, 2007). Differences in the strength of the relationships
between soil surface elevation gains and sea level anomaly and
turbidity in the eastern and western bay (Figs. 2 and 4), but simi-
larity in the relationship between sea level anomaly and surface
accretion (Fig. 3) suggests that the differences between the eastern
and western bay will influence their behaviour with sea level rise.
Sand is abundant in the eastern bay and is pushed into mangroves
by strong long-shore currents and waves (Eberhardt, 1978). The
resuspension of sand in the water column requires high levels of
energy and often occurs only after a certain wave energy threshold
is reached (Dick et al., 1994). Thus, accretion of sandy sediments in
mangroves in the eastern bay may be influenced more strongly by
oceanographic conditions including waves or extreme events (e.g.
Smoak et al., 2013) than by the factors associated with enhanced
turbidity in the western bay which may be more strongly
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Fig. 4. A) The relationship between soil surface elevation change and turbidity (NTU)
of coastal waters for the western (filled symbols) and eastern (open symbols) side of
Moreton Bay, Queensland. The regression line for the western bay is of the form,
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(open symbols) side of Moreton Bay, Queensland. The regression line for the western
bay is of the form, Y = 0.261 + 0.0160 * X, R? = 0.038, P = 0.0064.

influenced by rainfall stream flow and delivery of sediments from
the land (Figure S1).

Although the western bay was the environmental setting in
which turbidity and surface accretion was most strongly related to
soil surface elevation gains, shallow subsidence had a strong in-
fluence on surface elevation gains in both the western and eastern
bay. The influence of shallow subsidence on the soil surface
elevation of tidal wetland soils has been recognized in many studies
(e.g. Krauss et al., 2003; Rogers and Saintilan, 2008; McKee, 2011;
Lovelock et al., 2011), but the proposed causes of subsidence vary
(Cahoon et al., 2006). Compaction of soil profiles can occur due to
reductions in groundwater (e.g. Whelan et al., 2005; Rogers and
Saintilan, 2008); decomposition of soil organic matter (e.g.
Cahoon et al., 2003; McKee et al., 2007); loss of living root biomass
(Cahoon et al., 2003; Krauss et al., 2014) and consolidation of the
mineral components (Allen, 2000). In our study we found a rela-
tionship between root production and shallow subsidence which
suggests levels of shallow subsidence may be linked to changes in
belowground productivity as well as to physical processes.

In our study, rates of root production were in the range
(300—600¢g Cm 2y~ 1) of those measured using root bag methods in
mangroves in Florida (McKee and Faulkner, 2000) and also in Belize
(McKee et al., 2007). In the eastern bay during the warm/wet
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measurement interval, root production exceeded those reported for
Micronesia (Gleason and Ewel, 2002; Cormier, 2003), but were
similar to estimations derived from total belowground carbon
allocation (~1200 g m~2 y~!, assuming biomass is ~50% carbon,
Lovelock, 2008). In the western bay root production rates were low
compared to the eastern bay and to those reported in other studies,
particularly in the dry/cool period. High nutrient concentrations in
soils of the western bay may reduce allocation to roots in these
forests (Castenada et al., 2011). Additionally, the differences in tree
species in either side of the bay as well as the differences in the
position in the intertidal zone (eastern bay forests were lower in the
intertidal zone at approximately the level of mean sea level while
those in the western bay are 0.6 m above mean sea level) may also
contribute to difference in root production. In the western bay Avi-
cenna marina is dominant, while in the eastern bay, Rhizophora
stylosa, which is in the same genus as R. mangle, a species that pro-
duces peat (McKee et al., 2007), is also abundant. Trees lower in the
intertidal may allocate a greater proportion of biomass to roots as an
adaptation to longer inundation periods (Krauss et al., 2014) which
may also contribute to differences in root production over the bay.
Differences in the material used in the root bags in the east and
western bay, which were used to reflect differences in the soil on
either side of the bay, could also contribute to the differences in

I dry season
1.2 71 wet season

0.8 4
0.6
0.4

0.2

00 -
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Potential contribution of roots to
soil surface elevation (mm/month)
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Location

Fig. 6. The potential contribution of root growth to soil surface elevation in Moreton
Bay in either the dry season (black bars) and wet season (dashed bars). The potential
root contribution was calculated as the volume of roots grown within root bags in the
top 20 cm of soil. Values are means of three sites + standard errors. Different letters
indicate significantly different values (P < 0.05) determined using a least significant
difference test.

root production in the eastern and western bay. Root growth is
usually higher in low bulk density compared to high bulk density
soils (e.g. Vocanson et al.,, 2006), and thus we may expect root
production in the western bay (where we used peat moss/coconut
fibre as substrate, to reflect the high levels of organic matter and
low bulk density at the site) should actually be higher than in the
natural soils. However, the low bulk density of the artificial soil in
the root bags may also have altered hydrological properties, which
could have contributed to low root production in the western
mangrove forests. Lower root production in the dry/cool months
compared to the warm/wet months is likely to reflect temperature
constraints on mangrove growth in subtropical environments
(Mackay et al., 1993), seasonally lower sea level (Supplementary
material Figure S1, Kirwan and Guntenspergen, 2012) and
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Fig. 7. The relationship between shallow soil subsidence (mm mo~') and the potential
contributions to soil surface elevation by root growth for the western (filled symbols)
and eastern (open symbols) Moreton Bay, Queensland. Measurements were made in a
low rainfall period (triangles) and a high rainfall period (circles). The lines are the
regression for the dry period, Y = —0.101 + (—0.432) * X, R? = 0.576 (solid line) and the
wet period, Y = 0.216 + (—0.345) * X, R? = 0.212 (dashed line). Negative subsidence
indicates a subsurface increase in soil volume.
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possibly higher salinity of soils due to lower rainfall and freshwater
and tidal inputs into mangrove habitats.

The volume of roots produced was not correlated with soil
surface elevation gains at our sites in Moreton Bay. This contrasts
with the important role of root production in sustaining soil surface
elevation gains in settings with low levels of sediment inputs
(McKee, 2011). Although we did not find a significant relationship
between soil surface elevation gains and root production, we did
find a significant relationship between root production and
decreasing rates of shallow subsidence (Fig. 7). The generally higher
rates of shallow subsidence in the western than eastern bay may
occur because of high rates of compaction of low bulk density soils
when they are loaded with tidal water during inundation and/or
due to changes in the availability of groundwater or organic matter
decomposition (Lovelock et al., 2011). However, because mangrove
roots preferentially use old root channels and other macropores in
soils to maximize nutrient capture (McKee, 2001), root production
may limit subsidence of soils by filling macropores within soils,
thereby reducing compaction of soils. The high level of subsidence
observed in the western bay is consistent with low bulk density
soils and low levels of root production, which could be a response
to reduced requirement for nutrient conservation because of
nutrient pollution (Dennison and Abal, 1999). But we also found
that subsidence tended to be lower in the cool/dry season
compared to the warm/wet season, which is the reverse of what
might be expected if root production was the only factor deter-
mining subsidence (Table 1). More detailed knowledge of root
growth, turnover, soil structure and decomposition of soil organic
matter is required to fully understand the influences of roots on soil
subsidence in this ecosystem.

Sea level rise in Moreton Bay is likely to increase rates of ac-
cretion in the western bay mangrove forests if suspended sediment
concentrations are maintained. Decreases in rainfall are predicted
for the region for the next century (Hughes, 2003) which may
decrease sediment supply delivered in flood events (Fabricius et al.,
2013). However, rainfall is predicted to occur in heavier pulses,
which could maintain sediment loads if upstream erosion is
enhanced. Our results indicate that declines in sediment run-off to
Moreton Bay could have negative consequences for the ability of
mangrove forest soils to keep up with sea level rise in the western
bay. Re-suspension of fine sediments that have been deposited over
the last century (You et al., 2005; Morelli et al., 2012) due to wind
and waves could also continue to deliver sediments to mangroves
in western Moreton Bay into the future, but this is likely to occur
mostly in the northern bay where the fetch is greater compared to
the southern bay.

5. Conclusion

Our study indicates that mangrove forests are likely to accrete
with sea level rise where sediment supply is high, as predicted by
models of tidal marsh surface elevation (Allen, 2000; Temmerman
et al,, 2004; Kirwan and Murray, 2007). Other forces, for example
currents and waves, are likely to be more important in determining
accretion in settings where sediments are coarse (e.g. MacDonald
and O'Connor, 1996). We also found some evidence that root
growth could be important in maintaining soil surface elevation in
mineral settings due to its link to reduced soil subsidence. Current
models do not consider the role of soil macropores and the con-
sequences of their collapse on soil surface elevation dynamics, yet
in mangroves, where boles and roots of trees are woody, this could
be an important process. Climate change is resulting in rising sea
level, but there is co-variation with sediment supply and rainfall
that will have complex, interacting effects on intertidal wetland
ecosystems. On balance, our study suggests predicted climate

change for the region will have a negative effect on mangrove soil
surface elevation gains in the western bay, and other mangrove
forests that are dependent on sediments delivered during rainfall
events, because of reductions in sediment supply, but effects on
mangroves of the eastern bay are less certain. Our results indicate
that both surface (sedimentation) and subsurface (root growth)
processes can influence mangrove capacity to keep pace with sea
level rise within the same geographic location, and that current
models of tidal marsh responses to sea level rise capture the major
feature of the response of mangroves where fine, but not coarse,
sediments are abundant.
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Figure S1. Conceptual framework for this study based on Figure 4 of Allen (2000). Parameters in
green are measured in this study for twelve time periods between 2007 and 2011. The role of
suspended material (using turbidity as an indicator) and hydroperiod (sea level) in orange and their
relationship to surface accretion (arrows in red) are assessed in this study.
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Figure S2. Variation in climatic and oceanographic variables over the study period from March 2007
to November 2011. A) rainfall; B) sea level at the Brisbane Bar; C) Southern Oscillation Index; D) sea
level anomaly; E) stream flow of the Brisbane River (log transformed); F) wind speed at 3 pm
(Brisbane Airport); and G) turbidity of coastal waters adjacent to the study sites in either eastern or
western Moreton Bay. Rainfall, stream flow, wind speed and the SOI were sourced from the
Australian Bureau of Meteorology. Sea level was obtained from https,//www.bodc.ac.uk for
station PSM 21764 on Bishop Island at the mouth of the Brisbane River (GLOSS number 58).
Sea level anomaly was the difference between the sea level during the measurement period

and the mean sea level from 1984 to 2012. Turbidity was sourced from the Environmental
Health Monitoring Program (EHMP, Queensland Government).
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Figure S3. Variation in the sea level anomaly (mean value for the measurement interval —
mean sea level from 1984-2012) with the Southern Oscillation Index (sourced from the
Australian Bureau of Meteorology). The line is the regression of the form: Y=20.2 +3.17 *

X, R?=0.22.
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Figure S4. The relationship between A) turbidity and sea level anomaly; and B) turbidity and
cumulative rainfall for each measurement period in Moreton Bay for the western side of the
bay (filled symbols) and the eastern side of the bay (open symbols). The line for the western
bay in panel A is the regression of the form, Y =6.14 + 0.065 * X, R? = 0.346, P < 0.0001 and
for panel Bis Y = 5.50 + 0.0065 * X, R = 0.140, P = 0.014.
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