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Background

Hurricane Mitch left three very different impacts on mangroves in the coastal zone of

Central America.  First, in the Caribbean, direct wind and flood-induced mangrove

mortality was seen in the Bay Islands.  Second, wave-induced erosion of beaches and

subsequent sediment deposition buried mangrove forests of Punta de Manabique,

Guatemala.  Finally, along the Pacific coast, some mangroves of the Gulf of Fonseca

were buried under up to 100 cm of sediments eroded from uplands and carried down

slope by river flooding.  Each of these three impacts left a different footprint on the

mangrove communities, and these communities are expected to follow different recovery

trajectories.  These time-dependent responses will lead to different rates of success at

reaching prehurricane conditions and imply differences in mangrove forest sustainability

in face of a constantly changing environment.  Rising sea level, for example, might make

Caribbean mangroves more susceptible to hurricane-induced elevation deficits.

The long-term stability of mangrove forests depends in part on the ability of mangrove

sediment surfaces to keep pace with sea-level rise.  The Bay Islands of Honduras are far

from continental sources of sediment, and the mangrove forests therefore have primarily

organic soils.  Mangrove root growth and litter fall are the main contributors to the

fibrous soil matrix.  Since these materials are constantly decomposing and turning over,

continual addition of organic matter is required for the mangrove sediment surface to

maintain its elevation.  In the wake of Hurricane Mitch, the process of sediment elevation
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maintenance is placed into jeopardy for those mangrove forests that suffered high

mortality.

Little is known about the balance between production and decomposition of soil organic

matter in the maintenance of mangrove sediment elevation.  Evidence from a study in

Florida has suggested that extensive mangrove mortality in a carbonate setting may lead

to sediment collapse and the conversion of previous mangrove forests to mudflats

(Wanless and others, 1994).  This is particularly alarming for an area such as Guanaja,

which sustained a high rate of mangrove tree mortality (95%) due to Hurricane Mitch

(DeSomviele, 1999).  The case of Guanaja is made worse by the fact that probable

sources of mangrove propagules are very remote (e.g., the coast of Mosquitia, Honduras).

Ocean currents run east to west, effectively isolating Guanaja from its nearest neighbor,

Roatan.  If the sediment surface collapses from oxidation and compaction of the peat

before new plants can recolonize the area, natural recovery of previous mangrove forests

would likely be impossible given current and predicted rates of increasing sea level.

A very important feature of mangrove forests is their ability to trap and bind sediment

within their extensive root structures.  Under a moderate sedimentation rate, a mangrove

forest will accelerate the process of land formation.  Too much sedimentation, on the

other hand, can lead to mangrove mortality as the sediments asphyxiate the respiratory

structures (e.g., lenticels and aerenchyma), which mangroves have developed to allow for

gas exchange within the roots (Ellison 1998).  In the Gulf of Fonseca, shear from the

floodwaters’ solid discharge and massive sedimentation caused both defoliation of
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mangrove canopies and asphyxiation of mangrove roots, respectively.  The outcome was

large expanses of mangrove mortality.  Since the accreted surfaces are now at a higher

elevation than before the hurricane, flooding frequencies are reduced along with the

opportunities for propagule recruitment.  Without sufficient root growth, these accreted

surfaces may be unstable and erode over time, complicating further recovery.  Such

continued reworking of Hurricane Mitch sediments would represent continued, long-term

chronic impacts to the coastal environment.

The main issues this study addresses are:

1) What is the sediment elevation response of mangrove forests to three different

mechanisms of hurricane-related impacts?  How do the responses change over

different intensities of impact? Are the effects homogenous across the intertidal

zones?

2) What are the long-term impacts to mangrove forest recovery and sustainability in

the face of sea-level rise across the three different impact types?  Are these

impacts constant across intertidal zones as well?

a) Will mangrove sediments collapse in the Bay Islands?

b) Are newly accreted surfaces in Guatemala and the Gulf of Fonseca stable

features, or do they represent future sources of remobilized sediment with

potentially chronic impacts to mangrove forests or adjacent seagrass

communities?
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Study Sites

Three coastal mangrove regions were chosen to represent the three mechanisms of

hurricane-related impacts (wind, wave and sedimentation): The Bay Islands of Roatan

and Guanaja, Honduras (wind impacts), Punta de Manabique, Guatemala (wave and

sediment impacts) and the Gulf of Fonseca, Honduras (sediment burial; fig. 1).  The Bay

Islands and Punta de Manabique correspond to regions directly affected by the passage of

the hurricane within the coastal environment.  The Gulf of Fonseca corresponds to a

region that received the accumulated indirect effects of extreme rainfall, erosion,

landslide and debris flows within the larger watershed.  Not surprisingly, storm-related

sedimentation patterns differed importantly among the three areas (table 1; McKee and

McGinnis, 2002).  There were negligible sediment deposits in the Bay Island forests

where most of the damage was caused by winds and storm surge.  At Punta de

Manabique, storm waves toppled trees, and eroded the beach sand and deposited it in

mangrove forests located behind the beach.  In the Gulf of Fonseca, large quantities of

silts and clays eroded from uplands were deposited in the mangrove forests.

Materials and Methods

In the Bay Islands, mangrove forests were chosen to represent low, medium, and high

levels of wind and flooding impact.  Both shoreline and interior forests were chosen

within each impact level, resulting in six combinations of impact levels and intertidal

zones.  The high impact area was limited to Guanaja, where three replicate shoreline and
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Figure 1.  Map of Honduras showing the track of Hurricane Mitch in relation to the three

geographic areas (circled in red) where a study of mangrove sediment surface responses

to Hurricane Mitch was conducted between January 2000 and August 2001: the Bay

Islands of Roatan and Guanaja (Honduras), Punta de Manabique (Guatemala) and the

Gulf of Fonseca (Honduras).

PUNTA

MANABIQUE

GULF OF

FONSECA
North

Roatan

Guanaja
Hurricane Mitch
Storm Track
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Table 1.  Depth of Hurricane Mitch-related sediment deposits in mangrove forests in

Honduras and Guatemala, from McKee and McGinnis, 2002.  Data from

Honduras obtained in January 2000, 14 months after the storm.  Data from

Guatemala obtained in late August 2000, 22 months after Hurricane Mitch.  Units

of depth given in centimeters.

Intertidal zone
REGION IMPACT LEVEL SHORELINE INTERIOR

Bay Islands Low 0 0
(Honduras) Medium 21 4  (3-5)1

High 21 0
Guatemala Low 0

High 81  (61-122)2

Gulf of Fonseca Low 0 0
(Honduras) Medium 16  (7-25)3 91  (78-97)3

High 44  (36-50)3 13  (9-16)3

1 Marl and calcium carbonate chips
2 Sand
3 Mineral sediments
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Figure 2.  Map of Guanaja (Bay Islands, Honduras), showing the area of Mangrove Bight

where mangrove sediment surface responses to high hurricane impacts were

studied (circled in red).

Mangrove
Bight

North

Banacca Town

Savannah
Bight

Airstrip

Canal
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Figure 3.  Map of Roatan (Bay Islands, Honduras), showing the location of the area

where mangrove sediment surface responses to low and medium hurricane

impacts were studied (Santa Elena mangroves).  The north shore mangroves

(circled in red) received wind and wave-induced damage from Hurricane Mitch.

The south shore mangrove forest (circled in purple) was relatively protected from

these effects.

North
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Figure 4: Photographs from six mangrove forests in the Bay Islands, Honduras, which

were investigated for Hurricane Mitch-related impacts:  A) low impact shoreline

(south shore, Roatan); B)low impact interior (south shore, Roatan); C) medium

impact shoreline (north shore, Roatan); D) medium impact interior (north shore,

Roatan); E) high impact shoreline (Guanaja); F) high impact interior (Guanaja).

A B

C
D

E
F
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three replicate interior plots were randomly established within the Mangrove Bight area

(16°30’N, 85°51’W; fig. 2).  A low and a medium impact area were identified along the

south (16°25’N, 86°14’W) and north (16°25’N, 86°13’W) shores, respectively, of the

Santa Elena mangroves (Roatan; fig. 3).  As in Guanaja, three replicate shoreline and

three replicate interior mangrove forest plots were randomly established within both the

low and medium impact areas.  A total of eighteen mangrove forest plots were thereby

established in the Bay Islands (fig. 4).

In each plot, a single Rod Surface Elevation Table, or Rod SET, (Cahoon and others

2002) station was established to monitor changes in sediment elevation over time (fig. 5).

Stainless steel benchmark rods (in 4 ft. sections) were sequentially inserted into the

sediment until refusal, using a hand-held pile driver.  A stainless steel collar was then

fixed onto the last rod section, which would serve as the attachment point for the Rod

SET.  Upon deployment, the Rod SET is fitted to the collar (held in place with clamps)

and leveled in two dimensions.  Nine labeled fiberglass pins are inserted into each of nine

corresponding holes along the horizontal arm of the Rod SET, and each pin carefully is

lowered until it contacts the sediment surface.  The distance from the horizontal arm of

the Rod SET to the top of each pin corresponds to the elevation of the sediment (fig. 6).

The Rod SET collar allows for a total of eight positions to be taken in a circle around the

benchmark rod (each 45 degrees apart).  To avoid altering measured sediment surfaces,

only five of the eight positions were read, corresponding to a semicircle in front of a path

of approach.
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Figure 5.  A conceptual diagram showing that portion of the sediment profile measured

by the Rod Surface Elevation Table and the marker horizon.  Shallow subsidence

is calculated as vertical accretion minus elevation change.  Note: the average

thickness of the storm deposit varied from 0 to 91 cm among the different study

sites (table 1).
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Figure 6.  Deployment of the Rod Surface Elevation Table in mangrove sites in Punta de

Manabique (photograph A; Guatemala) and the Gulf of Fonseca (photograph B;

Honduras).

A B
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The Rod SET measures all processes affecting sediment elevation over the depth of the rod

benchmark (often up to 10 m).  To separate belowground processes such as compaction,

subsidence, root production, and sediment shrinking/swelling from the aboveground process of

accretion, marker horizon plots were established in the vicinity of each Rod SET station (fig. 7).

Three replicate 0.25 m2 markers (local beach sand) were laid at the same time that the baseline

Rod SET readings were taken (May 4-7, 2000).  Rod SET stations and marker horizons were

initially read in early May 2000, with sequential readings taken in August 2000 and January,

April, and August 2001.  Reading the markers involved taking one or more short cores from each

marker surface and making multiple measurements of depth to the marker within each core (fig.

8).  Misses were recorded, and generally only one core was taken per horizon.  The resulting

experimental design was a repeated measures treatment design, with the six impact-by-zone

treatment combinations measured sequentially over time.  Impact levels and mangrove zones

were assigned as a completely randomized design (CRD) with a nested error structure (pins,

positions/marker horizons, plots).  Plots were the error term for the factorial.

At Punta de Manabique, mangrove forests were chosen to represent high and low wave-

related hurricane impacts.  Two impact levels were identified: the high impact area was

on the northern (exposed) coast of Manabique (15°49’N, 88°24’W); the low impact area

was located in Bahía de Graciosa, on the protected side of the Manabique peninsula

(15°52’N, 88°31’W; fig. 9).  Only shoreline mangroves were common to both impact

levels, so three replicate plots were randomly chosen within each impact level, for a total

of six plots in Punta de Manabique.  In Bahía de Graciosa, two plots were located along
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Figure 7.  Deployment of feldspar and calcium carbonate marker horizons in the dwarf

mangrove forests of the Conchalitos estuary damaged by Hurricane Mitch (Gulf

of Fonseca, Honduras; April 2000).  Three replicate 0.25 m2 horizons were

randomly placed within the vicinity of the Rod SET to measure vertical accretion.
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Figure 8.  Measurement of soil vertical accretion in an organic sediment (Roatan, Bay Islands,

Honduras).  Accretion is measured as the amount of material accumulated on top of a

marker horizon (in this case, a sand lens at the tip of the knife).
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Figure 9.  Map of Punta de Manabique, along the Gulf of Honduras coast of Guatemala,

showing the location of the mangrove forests where sediment surface responses to

both high and low hurricane wave-induced impacts were studied.  The exposed

side of the peninsula (circled in red) suffered high damage from Hurricane Mitch.

The protected inland side was unscathed (circled in purple).

North

Punta Manabique

Bahía de Graciosa

Puerto Barrios Motagua River
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Figure 10:  Mangrove shoreline forests in Punta de Manabique, Guatemala, which were

studied for Hurricane Mitch-related impacts:  A) Low impact shoreline (Bahía de

Graciosa); and B) High impact shoreline (Punta de Manabique, near Jaloa).

A B
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the northern shore of the bay, and one plot was established along the southern shore (fig.

10).  Due to the paucity of remaining highly impacted mangrove forests along the north

shore of Manabique, all three replicate plots were chosen in the vicinity of the Jaloa

settlement (in an area locally called “Remolinos”; fig. 10).  As in the Bay Islands, one

Rod SET station and three replicate marker horizons were established within each plot.

Sand markers were placed at the same time that baseline readings of the Rod SET were

taken (August 2000).  Because the high impact area was covered in hurricane-deposited

sand, no markers were placed here at this time.  Successive readings of the Rod SET and

markers occurred in January and August 2001.  In January 2001, plastic perforated PVC

plates were inserted into the sand at the high impact plots to serve as accretion markers.

Initial depths to the plates were read in January, with one subsequent reading taken in

August 2001. The experimental design was therefore a repeated measures, one-factor

model (CRD for impact levels) with nested error structure (pins, positions/horizons and

plots).

According to local inhabitants, upland runoff from Hurricane Mitch delivered sediments

to the Gulf of Fonseca at several locations, and these sediments were subsequently widely

distributed around the gulf. The mangrove forests most severely affected by sediment

burial and debris flows were located in the upper reaches of the Conchalitos estuary, near

San José de las Conchas (13°20’N, 87°24’W; fig. 11).  It is here that the avulsion of the

Choluteca River emptied into the estuarine reaches of the Gulf of Fonseca as a result of

Hurricane Mitch (Hensel and Proffitt, 2002).  Mangrove forests were chosen in this area

to represent high and medium sedimentation impacts.  Triplicate random plots were
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Figure 11.  Map of the central region of the Gulf of Fonseca (Honduras), where the study

of Hurricane Mitch-induced sediment impacts to mangrove forests was

conducted.  High and medium-impact sites circled in red; low impact sites circled

in purple. The path of the Choluteca River during the hurricane is indicated by the

red arrow.

Choluteca
River

Conchalitos
Estuary

San Lorenzo

North

San José
de las
Conchas
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Figure 12.  Mangrove shoreline and dwarf interior forests in the Gulf of Fonseca

(Honduras) where Hurricane Mitch-related impacts were studied: A) Low impact

shoreline (near mouth of Conchalitos estuary); B) Low impact (dwarf) interior forest; C)

Medium impact shoreline (near San José de las Conchas); D) Medium impact (dwarf)

interior; E) High impact shoreline (near San José de las Conchas); F) High impact interior

(an abandoned shrimp pond).

B

C
D

E
F

A
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chosen in both shoreline and interior mangrove forests at these impact levels (fig. 12).

The high impact interior plots, however, were located in an abandoned shrimp pond

whose surface had been graded by the landowner sometime between August 1999 and

January 2000.  Therefore, these plots represent not only Hurricane Mitch impacts, but

also some degree of human impacts that can be considered steps towards the restoration

of prehurricane sediment elevations.  Mangrove forests that received little or no

Hurricane Mitch impacts were identified near the mouth of the Conchalitos estuary

(13°20’N, 87°27’W; fig. 11).  Triplicate shoreline and interior mangrove forest plots

were chosen at random within this area.  A total of 18 plots were therefore included in

this part of the study.

One Rod SET station and three marker horizons were established in each plot in the Gulf

of Fonseca in late April 2000.  Subsequent readings of the Rod SET and markers were

made in August 2000 and January, April, and August 2001.  In the Gulf of Fonseca, the

intertidal zones were not similar across impact levels due to two considerations.  First, the

high impact interior represented a mixture of different impact mechanisms: dwarf

mangrove interior forest converted into a shrimp pond, then buried, graded, abandoned,

then restored to a shrimp pond.  Second, low impact sites were located downstream,

which represented a somewhat different habitat type and made direct comparisons

tenuous.  The design was therefore considered as a one-factor model (CRD), repeated

over time.  The factor was present at six levels, representing the different impact and

zone combinations, and had nested error.



25

Relative Elevation Model

Measurements of vertical accretion and shallow subsidence do not necessarily integrate

long-term processes that affect wetland elevation and sediment collapse, such as

compaction and decomposition.  Additionally it may take several years before a clear

trend emerges from these types of data.  Finally, these types of measurements do not take

into account possible elevation feedback mechanisms on the processes themselves.  For

example, a change in elevation typically alters flooding patterns that can in turn affect

rates of sediment deposition, decomposition, and autogenic primary production.   For

these reasons, site-specific computer models that consider all of the relevant processes

over appropriate time scales and incorporate feedback mechanisms can provide an

additional and complimentary tool for examining the response of wetland elevation to

various perturbations (Callaway and others, 1996; Rybczyk and others, 1998; Day and

others, 1999).  The field measurements of vertical accretion and elevation change

described above not only give some indication of short-term wetland elevation dynamics

but also provide data for model initialization and calibration. We used the field elevation

and accretion data collected as part of this study to modify, initialize, and calibrate a

previously published wetland elevation model (Rybczyk and others, 1998; Day and

others, 1999).  We applied the sediment elevation model to the high impact basin forest

on Guanaja because this forest suffered complete tree mortality, was undergoing a rapid

loss of elevation, and exhibited little potential for natural forest regeneration (i.e., there

was no propagule colonization and no adjacent live forest to serve as a source of

propagules).  The model was calibrated by comparing observed percent organic matter
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over depth (McKee and McGinnis, 2002) with the simulated output of the same

parameter.

Determining Field Elevations.  It was necessary to obtain site elevation data for the

simulation model because mineral inputs, primary production, and rates of decomposition

are all functions of sediment elevation. Using standard techniques (profile leveling with a

theodolite and survey rod), we measured the elevation of the Bay Island Rod SET sites

relative to mean low low water (MLLW) on August 22 through August 24, 2001.

Model Development.  The model used here is similar in framework to the mechanistic

wetland soil genesis model developed by Morris and Bowden (1986) and Rybczyk and

others (1998) to simulate elevation changes in forested wetlands. It incorporates a

mineral sediment deposition function that is derivative of the algorithms developed by

Allen (1990) and French (1993), and primary productivity algorithms developed by Chen

and Twilley (1999) that are specific to mangrove wetlands. A complete description of the

generic model including validation exercises is provided in Rybczyk and others (1998).

A brief description of the model and modifications to the published model are provided in

Appendix A.

 Statistical Analyses

Sediment elevation (Rod SET) data and vertical accretion (marker horizon) data were

analyzed separately, although identical models were used.  Rod SET data were calculated

as cumulative change for each pin from the baseline reading.  Average cumulative change
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was then calculated over the nine pins, then over the five positions within each Rod SET

station.  Marker horizon data were averaged per core, then per horizon and per plot.  A

Durbin-Watson test was performed on each data set to test for significant first-order serial

correlation.  Since all tests were nonsignificant, the data were analyzed using an analysis

of covariance (ANCOVA), with time as the covariate (SAS Proc Reg: SAS, 2000). The

data sets included zeros corresponding to the baseline readings or initial deployment of

the marker horizons, and the models were run forcing the intercept through the origin.

Different slopes therefore corresponded to the six different impact by zone treatment

combinations (or impact levels, in the case of Punta de Manabique).  A stepwise

regression procedure was invoked to select for the most efficient model, which

essentially compared the six different treatment combinations (two treatment

combinations for Manabique).

Results

Bay Islands, Honduras

Vertical accretion rates 18-33 months after the storm were uniformly low (0.2 cm yr-1) in

all forest plots except those in the high impact shoreline forest on Guanaja, where the

accretion rate was 1.4 cm yr-1 (figs. 13 and 14).  This high accretion rate is related to the

accumulation of encrusting algae in the dead shoreline forest rather than inorganic

sediment deposition (fig. 15).  In the dead interior mangrove forest on Guanaja, the

source of accreted material is likely sediments reworked from within the degraded

substrate.  Two notable accretionary events were recorded in both the high and medium

impact shorelines; one occurred between August 2000 and January 2001 and another
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Figure 13.  Cumulative vertical accretion above sand marker horizons in the shoreline

mangrove forests of the Bay Islands (Honduras), over the period May 2000 –

August 2001.  Means and slopes calculated from an analysis of covariance.
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Figure 14. Cumulative vertical accretion above sand marker horizons in the interior

mangrove forests of the Bay Islands (Honduras), over the period May 2000-

August 2001.  Means and slopes calculated from an analysis of covariance.
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Figure 15.  Vertical accretion on top of sand marker horizon in a shoreline mangrove

forest which sustained high impact from Hurricane Mitch (Mangrove Bight,

Guanaja, Honduras).  Core sample represents accretion over a 12.5-month period

May 2000 – April 2001, and shows the accumulation of encrusting algae and

other materials over the marker surface.

Sand marker horizon

Live algae on sediment
surface

Accumulated material in
very thin layers
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occurred between April and August 2001 (fig. 13). The absence of this trend within the

low impact shoreline and all interior plots (fig. 14), and the fact that both medium and

high impact shorelines have an aspect to the North, suggests the deposition was from two

(northerly) storm events.  There is no evidence that these patterns reflect a chronic

Hurricane Mitch-related impact.

Elevation change in the Bay Island mangrove forests showed that vertical accretion was

not the only process contributing to sediment elevation dynamics.  Despite positive

accretion, significant elevation losses were measured in the medium and high impact

interior forests (-0.92 and –0.95 cm yr-1, respectively; fig. 16).  This elevation loss

suggests that sediment compaction, or peat collapse, is occurring in these dead and dying

mangrove forests.  Interestingly, there was a strong seasonal component to the elevation

signal for these forests with elevation first declining, then increasing, then declining, and

then increasing.  No statistical relationships to tide, phase of the moon, or the

presence/absence of water on the plots were found.  This trend therefore suggests that a

seasonally varying belowground process, such as water storage, was influencing

elevation in addition to the processes of oxidation and compaction that are driving the

peat collapse.

Sediment compaction also played an important role in the high impact shoreline forest

where elevation change was positive.  During the first 12 months of measurements,

elevation change matched accretion very closely, demonstrating the importance of algal

mat development in controlling sediment elevation (figs. 13 and 17).  However, during
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Figure 16. Cumulative surface elevation change in the interior mangrove forests of the

Bay Islands (Honduras), over the period May 2000 – August 2001.  Means and

slopes calculated from an analysis of covariance.
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Figure 17. Cumulative surface elevation change in the shoreline mangrove forests of the

Bay Islands (Honduras), over the period May 2000 – August 2001.  Means and slopes

calculated from an analysis of covariance.
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the last sampling interval, elevation declined substantially while accretion increased

substantially, such that the annual rate of elevation change (0.99 cm yr-1) lagged behind

vertical accretion (1.4 cm yr-1).  The decrease in elevation in the dead shoreline forest

 suggests that this substrate is beginning to undergo peat collapse similar to the dead

interior forest.  The red mangrove (Rhizophora mangle L.) that dominates the shoreline

forest produces a denser, more extensive, and stronger peat than the black mangrove

(Avicennia germinans (L.) Stearn), which is predominant in the mixed-species interior

forest (McKee and McGinnis, 2002).  Such a difference between mangrove species likely

explains why peat collapse is occurring more slowly in the shoreline forest than in the

interior forest. The importance of subsurface processes in controlling sediment elevation

is also indicated in the finding that the rate of elevation gain in the low and medium

shorelines, and the low impact interior was over twice the rate of vertical accretion (figs.

13, 14, 16 and 17).  Although high variability exists in the data, this disparity between

accretion and elevation suggests belowground processes such as root growth contributed

to sediment surface elevation in those forests where tree mortality was minimal.

Guanaja Sediment Elevation Model.  Field elevation survey - Tides around the Bay

Islands exhibit an asymmetrical diurnal pattern, and local tide charts report water levels

relative to MLLW.  Not all sites were directly linked to each other during the survey.

Tables 2-5 separate the SET sites into groups that were directly linked during the survey.

For example, in table 2, SET sites shoreline 1 and interior 1 were directly linked via

sighting and backsighting along a traverse. Thus, within each table, the elevation of each

site relative to the other sites in the table is reasonably certain. Due to the large distance
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Table 2. Elevation of mangrove forest soil surfaces at low impact site 1 (South Shore

Santa Helena mangroves, Roatan, Honduras).  All units are in centimeters. Sites

were surveyed on August 22, 2001.

Station

Elevation relative to
other stations
in This Table

(lowest site = 0 cm) Elevation relative

to MLLW1

Elevation relative

to Mean Sea Level

Shoreline 0.0 cm + 3.6 - 27.35

Interior 11.0 cm + 14.6 - 16.35

1 Mean low low water
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Table 3.  Elevation of mangrove forest soil surfaces at low impact site 3 (South Shore

Santa Elena mangroves, Roatan, Honduras). All units are in centimeters. Sites

were surveyed on August 22, 2001.

Station

Elevation relative to

other stations

in this table

(lowest site = 0 cm)

Elevation relative

to MLLW1

Elevation relative

to Mean Sea Level

Shoreline 0.0 + 6.9 - 24.1

Interior 9.2 + 16.1 - 14.9

1 Mean low low water
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Table 4.  Elevation of mangrove forest soil surfaces at medium impact sites 2 and 3

(North Shore Santa Elena mangroves, Roatan, Honduras). All units are in

centimeters. Sites were surveyed on August 22, 2001.

Station

Elevation relative to

other stations

in this table

(lowest site = 0 cm)

Elevation relative

to MLLW1

Elevation relative

to Mean Sea Level

Shoreline 2 0 41.7 + 72.7

Shoreline 3 7.1 48.3 + 79.3

Interior 3 16.2 57.9 + 88.9

1 Mean low low water
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Table 5.  Elevation of mangrove forest soil surfaces at the high impact sites (Mangrove

Bight, Guanaja, Honduras). All units are in centimeters. Sites were surveyed on

August 24, 2001.

Station

Elevation relative to

other stations

in this table

(lowest site = 0 cm)

Elevation relative to

MLLW1

Elevation relative to

Mean Sea Level

Shoreline 1 0 + 24.2 + 47.4

Shoreline 2 2.4 + 26.8 + 50.0

Interior 1 13.6 + 38.0 + 61.2

Interior 2 13.6 + 38.0 + 61.2

Interior 3 11.8 + 36.2 + 59.4

1 Mean low low water
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between sites, it was not possible to directly link the sites within the tables to sites listed

in other tables.  However, within each table, the sites were also directly linked to the

current sea level.  Therefore, by noting the time and the current tide level listed on local

charts, it was possible to indirectly link all sites (this indirect link is shown as elevation

relative to MLLW and mean sea level).

However, it is critical to note that the local tide charts are not specific for the SET sites.  Tide

data for Roatan were for Port Royal, and tide data for Guanaja were listed simply as

"Guanaja."  No corrections were given for specific localities. According to the charts, tides

ranged from 0 MLLW to 61 cm above MLLW during the three day span of our survey, and

since the tides are semidiurnal, even small time adjustments could dramatically affect the

elevation relative to MLLW that we obtained.  Additionally, two tropical storms passed

through the region during the field campaign, and it is certainly possible that there was some

wind-driven setup along the coast.

Due to the problems noted above, we have little confidence in the elevations relative to

MLLW and MSL.  However, since we know the exact time and location of each survey

site, it may be possible in the future to obtain more accurate predictions. This of course

would still not solve the problem associated with wind-driven setup.  Despite these

problems, a clear pattern does emerge when examining elevation differences between

shoreline and interior sites.  The elevation of the interior sites average 11.6 cm above the

elevation of the shoreline plots with a standard deviation of only 2.3 cm.



40

Model Calibration - The model is calibrated by comparing observed sediment

characteristics (i.e., percent organic matter, percent mineral matter, pore space, and bulk

density, by depth) with the simulated output of the same parameters. Neither of the high

impact sites had field measurements of bulk density with depth (only bulk densities near the

surface were measured).  Percent organic matter was the only sediment characteristic used to

calibrate the sediment model since pore space cannot be calculated if bulk density is not

known and percent mineral matter is merely a reflection of percent organic matter (percent

mineral matter = 100 - percent organic matter).  The simulated sediment columns were in

close agreement with observed characteristics at the high impact interior site, although the

model did not simulate the very abrupt transition between high and low organic matter found

at all sites (fig. 18).

Simulating a Preimpact Forest - We simulated a stable mangrove scenario (fig. 19) for

the high impact interior site using both field data and literature values for the various rates and

constants required by the model (table1, Appendix).  Stable elevations relative to sea-level

could only be obtained by using lower published values for relative sea-level rise (RLSR) in

the region (0.32 cm yr-1).

Simulated Hurricane Impacts – Simulations revealed a rapid sediment collapse of 3.7

cm yr-1 in the first two years after the hurricane (table 6, and fig.19).  This loss of elevation is

caused by the rapid decomposition of the labile root fraction.  Wanless and others (1995)

measured a similar rate of elevation loss (2.0-3.0 cm yr-1) during the 2 years immediately

following the death of a mangrove forest in southwest Florida caused by Hurricane Andrew.

Two years after Hurricane Mitch, the simulated rate of sediment collapse had decreased to   



41

Figure 18.  Simulated vs. observed sediment organic matter in the high impact mangrove

forest on Guanaja (Bay Islands, Honduras).
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Figure 19. Simulated loss in mangrove forest elevation relative to mean low low water

(MLLW) in the high impact mangrove basin for the10 years following Hurricane Mitch

(“Hurricane” line) compared to the simulated change in elevation with no hurricane

induced mortality (“No Hurricane” line).
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Table 6.   Simulated effects of Hurricane Mitch on mangrove forest sediment dynamics

and overall wetland elevation at the high impact sites on Guanaja.

Fringe Interior

Initial elevation relative to MLLW1 25.3 cm 37.5 cm

Elevation relative to MLLW1 10 yrs after Mitch 9.22 cm 21.0 cm

     • loss in elevation relative to MLLW1 16.1 cm 16.5

Loss in elevation due to sediment collapse alone 12.9 cm 13.3.0

Rate of sediment collapse in the first 2 years 3.5 cm yr-1 3.7 cm yr-1

Rate of sediment collapse over the next 8 years 0.72 cm yr-1 0.74 cm yr-1

1 Mean low low water
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0.74  cm yr-1.  Field measurements of sediment collapse did not begin until 18 months after

the storm.  Thus, we cannot verify the simulated collapse rates during the first two years.

However, the rate of sediment collapse measured in the field from 18-33 months after the

storm was 1.10 cm yr-1, similar to the 0.74 cm yr-1 simulated rate of collapse after two years.

The simulated rate of total-relative-elevation loss in the basin forest is higher than the

simulated sediment collapse rate (table 6) because simulated elevation loss is a function of

both sediment collapse and relative sea-level rise (0.32 cm yr-1; Emery and Aubrey 1991).

Punta de Manabique, Guatemala

Twenty-two months after the passage of Hurricane Mitch, no trace of hurricane

deposition was seen in the protected bay of Bahía de Graciosa (low impact plots; table 1).

Vertical accretion was low (0.036 cm yr-1; fig. 20), and likely reflects natural processes

unaffected by the hurricane.  These mangrove sediments are organic (McKee and

McGinnis, 2002), and are the product of mangrove forest production.   Thus sediment

accretion was likely a result of mangrove litter fall and superficial (fine) root growth (fig.

21) with little inorganic sediment input.  Net elevation change over the 12-month period

was insignificant (fig. 22), which implies that accretion was offset by belowground

processes such as shallow subsidence and decomposition, as has been reported for a

mangrove forest in Florida, USA (Cahoon and Lynch, 1997).

Storm-related sand deposits measuring between 60 and 120 cm in depth remained on top

of underlying peat in a mangrove forest on the Gulf of Honduras side of Punta de

Manabique, Guatemala (high impact plots; table 1).  Over seven months (January-

August 2001), no significant trends in vertical accretion were recorded.  Although a
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Figure 20.  Cumulative vertical accretion above marker horizons in the shoreline

mangrove forests of Punta de Manabique (Guatemala), over the period August 2000-

August 2001.
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Figure 21.  Accumulation of mangrove-derived materials on top of marker horizon plots

in a shoreline mangrove forest that sustained low impact from Hurricane Mitch

(Bahía la Graciosa, Guatemala).  Traces of the sand layer (marker) can be seen,

mixed with fine roots and topped with mangrove leaves.
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Figure 22.  Cumulative surface elevation change in the shoreline mangrove forests of

Punta de Manabique (Guatemala), over the period August 2000-August 2001.
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 positive trend is suggested in fig. 22, the accretion data do not reflect the missing marker

horizon plates that were eroded away.

Over the 12-month period of study, surface elevation at the high impact plots changed

markedly, but there was no significant overall trend revealed by regression analysis (fig.

22).  A large increase in elevation was recorded in January 2001, presumably caused by a

storm event in November 2000 that mobilized more sand on top of the surfaces

previously buried by close to one meter of hurricane-related sediments (Fundación Mario

Dary, Puerto Barrios, 2001, oral communication.).  The net effect of this accretion was a

net elevation gain of 13.2 cm.  By August 2001, all of this accretion was eroded away, as

indicated by erosion scarps and surface elevation fell below the poststorm baseline level

(-6.8 cm; fig. 22).  Hence, sediment elevation remains highly dynamic in this setting three

years after the storm.

Gulf of Fonseca, Honduras

Hurricane Mitch deposited on average 16-90 cm of sediment in the mangroves of the

upper Gulf of Fonseca (table 1), while reference mangrove forests received no storm-

related sediment deposits.  Despite this acute increase in elevation and consequent

reduction in flooding frequency, most study plots showed a trend of sustained vertical

accretion 18-33 months after the storm, apparently as a result of reworking of the storm

deposits, or in the case of the reference forests, natural sedimentation patterns. The

medium impact shoreline, with on average 16 cm of hurricane deposits (table 1), had a

significantly higher accretion rate (1.42 cm yr-1; fig. 23) compared to the other impact ×
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zone combinations (0.29 cm yr-1; fig. 24).  Although elevation profiles of each mangrove

zone were not measured, the medium impact shoreline forest was located on a point bar

which was clearly at a lower elevation than both the low and high impact shorelines and

all of the interior forests (as evidenced from different levels of flooding from the same

tides).  The high flooding frequency of the point bar helps explain the high sedimentation

rate.  The low accretion rate in the interior dwarf forests supports the contention that

these higher elevation sites were inundated very infrequently with sediment-rich water,

particularly the medium impact interior, which had a 90 cm-thick storm deposit.  Over

the period of study, several higher-elevation areas were eroding away, with the sediments

accumulating on adjacent, lower surfaces.  The fluctuating depth of the marker horizon

(increasing/decreasing/increasing etc) in the medium impact interior forest (fig. 24) is

likely a result of such repeated reworking (erosion and deposition) of the storm deposit.

Surface elevation change readings show that vertical accretion is responsible for only part

of the sediment surface dynamics in the mangrove forests of the Conchalitos estuary after

the storm.  The high impact shoreline and high impact interior forests showed elevation

loss while all other impact × zone combinations had a similar rate of elevation gain (0.46

cm yr-1; figs. 25 and 26).  The large decrease in elevation measured at the high impact

shoreline was caused by both sediment compaction and lateral erosion.  Between 18 and

21.5 months after Hurricane Mitch, this area was stable with respect to elevation change

(fig. 25).  Soon thereafter, between August 2000 and January 2001, a steady loss in

elevation was recorded despite no evidence of systematic erosion (elevation changed over

the 15-month period at rate of –2.08 cm yr-1; figs. 23 and 25).  Elevation loss is likely



50

Figure 23.  Cumulative vertical accretion above feldspar marker horizons in the shoreline

mangrove forests of the Gulf of Fonseca (Honduras), over the period May 2000-August

2001.  Means and slopes calculated from an analysis of covariance.
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Figure 24.  Cumulative vertical accretion above feldspar marker horizons in the interior

(dwarf) mangrove forests of the Gulf of Fonseca (Honduras), over the period May

2000 – August 2001.  Means and slopes calculated from an analysis of

covariance.
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Figure 25.  Cumulative surface elevation change in the shoreline mangrove forests of the

Gulf of Fonseca (Honduras), over the period May 2000-August 2001.  Means and

slopes calculated from an analysis of covariance.
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Figure 26.  Cumulative surface elevation change in the interior (dwarf) mangrove forests

of the Gulf of Fonseca (Honduras), over the period May 2000 – August 2001.  Means and

slopes calculated from an analysis of covariance.
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related to compaction and subsidence of either hurricane deposits and/or underlying

organic-rich mangrove shoreline sediments.  In addition to subsidence, lateral erosion of

the shoreline cut bank may have led to slumping of the substrate between January and

April 2001, as indicated by erosion scarps ranging from 1.0 to 4.6 cm in height, which

appeared in two of the three high impact shoreline plots.  One of the April 2001 elevation

plots recorded some of this lateral erosion, but average losses shown in fig. 25 are likely

underestimated because the plot showing the greatest erosion was destroyed before the

April reading, and the second plot showing lateral erosion could not be read in August

2001.

The high rate of elevation loss recorded in the high impact interior plots (the former

shrimp pond; fig. 26) was also related to sediment compaction.  Like the high impact

shoreline forest, initial surface stability occurred over the first three and a half months of

the study (18-21.5 months after Hurricane Mitch).  Initial stability was followed by

elevation loss, presumably due to compaction and subsidence because marker horizon

plots were not systematically eroded away (fig. 24).  However, any inferences into

recovery trajectories of these plots need to be considered in light of the degree of

hydrological alteration to this area, which included levees and other water control

structures, and initial grading (for shrimp pond development) of the surface prior to

establishment of the field plots.  Furthermore, after January 2001, this area was fully

restored to a shrimp pond, with restricted hydrologic connection to the estuary.  Although

elevation change was positive (0.46 cm yr-1; fig. 26) at the four remaining impact × zone

combinations, sediment compaction played an important role in elevation dynamics at
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some of these sites as well.  For example, in the medium impact shoreline forest, the low

rate of elevation gain compared to accretion (1.42 cm yr-1) suggests that rapid compaction

of unconsolidated sediment deposits occurred in this point bar environment.  In contrast,

there was no compaction of the 90 cm thick deposit in the medium impact interior forest

18-33 months after deposition.  This thick storm deposit located in the low-frequency

flooded interior dwarf forest apparently consolidated (dried out) prior to initiation of our

field sampling 18 months after the storm.  The underlying substrate of the dwarf forest

was apparently well consolidated as well.

Discussion

Each mechanism of hurricane impacts (e.g., winds, wave-related shoreline erosion, burial

by beach sand, and burial by eroded upland sediments) caused immediate mangrove

mortality in the high and medium impact zones.  At some sites, nearly the entire forest

was killed.  The impact of Hurricane Mitch on the long-term sustainability of sediment

elevation of the mangrove forests differed importantly among impact mechanisms (i.e.,

among the three study sites) and impact intensity, although the impact was not always

consistent across shoreline and interior forests at a site.  Hence, the implications for

mangrove sustainability under future sea-level predictions also differed importantly

among impact types, impact intensities, and shoreline and interior forests.

Bay Islands, Honduras

Nearly three years after the passage of Hurricane Mitch, the mangrove forest at

Mangrove Bight remains a ghost forest of dead trees.  There has been essentially no
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recolonization by mangrove propagules (one sapling, Hensel and Proffitt, 2002), no

inorganic sediment deposition, except for a small amount of sediment reworked from

within the interior forest, and the substrate is collapsing from decomposition of the highly

organic mangrove peat.  Without inorganic sediment input or renewed root production,

the elevation of the Guanaja mangrove forests will continue to decrease (fig. 19).  Model

simulated rates of elevation change indicate that elevation loss was initially very rapid

but slowed to approximately 1 cm yr-1 after all the highly labile organic matter

decomposed.  In addition, it should be noted that predicted increases in sea-level rise

would increase the rate of wetland elevation loss simulated here.  In this simulation, we

used only the current rate of sea-level rise (0.15 cm yr-1), as it is expected that some form

of restoration will occur at the Guanaja site in the near future due to the lack of natural

regeneration.

This model does not predict the elevation at which revegetation would be impossible due

to flooding stress, but rather only predicts the rate of elevation loss.  Furthermore, the

situation is complicated by the uncertainties surrounding the actual elevation of these

sites relative to mean sea level.  In any event, shallow subsidence rates approaching 1 cm

yr-1, as measured and simulated here, are rapid, and a cause for concern.  If the habitat

converts from high intertidal forest to low intertidal mudflat, it will be very difficult to

restore the elevation needed to support a mangrove forest.  Wanless and others 1994

reported that in southwest Florida, USA, mudflats developed, apparently as a result of

peat collapse, from mangrove forests that died as a result of the 1935 Labor Day

Hurricane. The mud flats subsequently expanded in size as a result of mangrove mortality
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following the 1947 hurricane and Hurricane Donna in 1960 and still exist today.  Natural

recolonization has not occurred in these mudflats after more than 60 years, despite a

plentiful source of propagules in the immediate vicinity.  For a rapidly subsiding

freshwater forested wetland in Louisiana, USA (Rybczyk and others, 1998), a simulation

model showed that above a critical sediment elevation at which plants could survive and

regenerate, the combined accretion of organic matter and mineral matter had a synergistic

effect on elevation which allowed the wetland to keep pace with high rates of relative

sea-level rise.  Below the critical sediment elevation, however, the elevation decreased

rapidly and additional mineral inputs had much less of an overall effect on wetland

elevation change.  Thus, remediation measures must be taken to stop and reverse

sediment elevation losses in the forest at Mangrove Bight.  Given that inorganic sediment

input to these forests is low and that natural recolonization is not occurring or is limited,

mangrove vegetation will have to be reestablished through plantings to renew root

production and restore sediment elevation in the dead forests.  However, it is unclear

whether current elevations and soil conditions are suitable to support seedling survival.

The sustainability of the mangrove forests at Mangrove Bight has implications for the

health of the seagrass communities located immediately adjacent to them.  The extensive

seagrass beds, located as close as 5 m from the mangrove shoreline, survived the passage

of Hurricane Mitch, and as of January 2000, had not undergone any significant burial by

mangrove sediments (Michot and others, 2002), perhaps due to their predominately

organic composition and the maintenance of soil integrity in the shoreline zone.
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However, loss of the mangrove buffer zone might eventually allow upland sediments to

reach seagrass beds.

The shoreline forest on the north shore of Roatan (medium impact site) survived the

passage of Hurricane Mitch with little or no mortality (Hensel and Proffitt, 2002) and our

data indicate that sediment elevation of this forest remained stable three years after the

storm.  Indeed, the sediment and elevation dynamics of this forest were identical to those

of the low impact forest on the south shore of Roatan.  No remediation measures are

needed for this impacted forest.  In contrast, parts of the interior forest on the north shore

of Roatan suffered severe mortality as a result of wind and storm surge impacts from the

hurricane (Hensel and Proffitt, 2002).  The sediment elevation of this forest collapsed at

the same rate as the interior forest on Guanaja.  Currently much of the dead zone remains

flooded most of the year (with a combination of both rain and sea water), because the

hydrological connection to the shoreline is restricted by the low-lying marl ridge.

Consequently, as sediment collapse continues, parts of this forest may eventually convert

into a permanent lagoon.  Regrowth and recovery is apparent in the dead zone (Hensel

and Proffitt, 2002), but results of this study indicate that soil formation is not keeping

pace with soil oxidation and compaction. Therefore, remedial plantings should be

undertaken soon because, if elevation losses continue, a critical point may be reached

where flooding stress may inhibit successful restoration in this area.   Like Mangrove

Bight on Guanaja, the sustainability of this mangrove forest has implications for the

health of the seagrass communities located immediately offshore.  These seagrass beds

survived the passage of Hurricane Mitch, and as of January 2000, had not undergone any



59

significant burial by mangrove sediments (Michot and others, 2002).  However, loss of

the mangrove buffer zone might eventually allow upland sediments to reach seagrass

beds.  The long-term survivability of the larger Santa Elena mangroves, however, appears

secure.

Punta de Manabique, Guatemala

Landward beach erosion of the Caribbean shoreline by storm-induced wave action

overturned mature mangrove trees located immediately behind the barrier beach and

placed the forest within an exposed shoreline.  The eroded beach sand was carried inland

by the storm surge and buried some additional mangrove trees.  The buried trees showed

signs of physiological stress (e.g., partial loss of foliage), but many were still alive three

years after the storm (Hensel and Proffitt, 2002).  Overall trends in recovery of sediment

elevation (and hence the mangrove forest) are not clear given the highly dynamic nature

of these sandy sediments.  The 60-120 cm storm deposit is gradually eroding away, but

recurring storms can rework sediments resulting in additional sediment deposits.

However, it is probable that if the new shoreline remains in its current location and is not

reestablished at its more seaward prestorm position, this stressed mangrove forest may be

lost under a regime of repeated accretion and erosion events, typical of sandy shorelines

in this highly dynamic setting.

Gulf of Fonseca

The mangrove forests buried by sediments eroded from the Choluteca watershed differed

in their survival and poststorm elevation dynamics, depending on impact intensity and
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position in the intertidal zone (shoreline vs. interior).  Thus, the sustainability of sediment

elevation in relation to sea-level rise also differed among the forests because of the

different amounts of elevation capital provided by the storm deposits.  For example, the

shoreline forest buried by 7-25 cm of sediment (medium impact) exhibited little mortality

18-33 months after the catastrophic flood (i.e., there were few dead standing trees; Hensel

and Proffitt, 2002).  This forest is experiencing high rates of shallow subsidence caused

by compaction of the storm deposit but not collapse of the mangrove peat, as is occurring

at Guanaja on the Caribbean coast.  Overall, there was a positive slope of vertical

accretion and elevation change in this forest.  Hence, the current elevation of this healthy

forest relative to sea level has been enhanced by the storm deposit, and despite the high

rate of compaction of the storm deposit and recently reworked sediments, sediment

elevation will likely remain stable relative to sea level for the foreseeable future.

In contrast, the shoreline forest buried by 36-50 cm of sediment (high impact) and the

interior forest buried by 78-97 cm of sediment experienced extensive although not

complete mortality (Hensel and Proffitt, 2002).  The interior forest is not losing elevation

while the shoreline forest is losing elevation rapidly (nearly 2.1 cm yr-1) as a result of

compaction of the poorly consolidated storm deposit, and likely also the underlying

organic mangrove peat.  Despite the high rate of elevation loss in the shoreline forest, the

sediment elevation of both forests relative to sea level has been enhanced by the storm

deposit to the extent that they will not be vulnerable to submergence for a long time.

Rather, the sustainability of these stressed forests likely depends on their ability to restore

root biomass near the new sediment surface, which will bind sediments, enhance both
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inorganic soil retention and organic soil formation, and allow for gas exchange to the

roots.  McKee and McGinnis (2002) reported there was little to no fine root production

within these thick sediment deposits two years after the storm.  Trees of the white

mangrove (Laguncularia racemosa (L.) Gaertn.f.) appear to be recovering well (Hensel

and Proffitt, 2002), although these mangroves may experience greater salinity stress at

the higher, less flooded elevation.  There is also evidence of red mangrove seedling

establishment (Rhizophora mangle L) in the shoreline forests (Hensel and Proffitt, 2002).

Despite signs of forest recovery, chronic effects of sediment burial and reworking will

remain for some time.  Surviving mangroves and new recruits face altered and

continuously changing sediment elevation conditions, which may slow down the

recovery process.  The reworking (repeated erosion and deposition) of this storm deposit

and the possible return to prestorm elevations will be a gradual process, if it occurs at all.

Whether or not these forests will survive remains to be seen.  Can the forests fully

recover if there is no erosion?  If there is erosion, will the forests be able to adapt to the

changing elevations?

The upper reaches of the Conchalitos estuary represent the most severe of the continuum

of Hurricane Mitch-induced sedimentation impacts in the Gulf of Fonseca.  Damaged

mangrove forests and unstable, reworked sediments also were apparent in the El Pedregal

estuary to the south, and the Chismuyo Bay to the north.  Results of this study suggest

that chronic sedimentation impacts remain in the larger Gulf of Fonseca despite signs of

natural mangrove forest recovery.
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Appendix

Relative Elevation Model Methodology.

Model Description.  The model utilizes a cohort approach (tracking discreet packages of

sediments through depth and time) to simulate sediment dynamics (organic and mineral

matter accretion, decomposition, compaction, and belowground productivity).  These

dynamics produce model-generated changes in sediment characteristics including bulk

density, organic matter volume and mass, mineral matter volume and mass, and pore volume.

The model yields total sediment height as an output.  Sediment height is then balanced with

eustatic sea-level rise (ESLR) and deep subsidence, both forcing functions, to determine

wetland elevation relative to sea level.  The model was programmed using STELLA

iconographic modeling software (Richmond and others 1987).  An Euler numerical method,

with a ?t = 1 week, was used to solve the finite difference equations generated by the

STELLA software. The model consists of three linked submodels or sectors:  (1) primary

productivity; (2) sediment dynamics; and (3) relative elevation.

Primary Productivity Submodel. There are two state variables in this submodel, leaf

(aboveground biomass) and root (belowground biomass).  These state variables are a function

of one constant, root to shoot ratio (rootmult), and four rates:  (1) net primary production

(maxnet), (2) leaf litter production during the growing season (llitrateg), (3) leaf litter

production at the end of the growing season (llitrated), and (4) root litter production (rlitrate).

The simulated organic matter is allocated to the sediment dynamics submodel on the surface
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as leaf and wood litter and within the sediment soil column as root biomass, with the

exception that a fraction of leaf litter is exported by tides.

Annual leaf production is simulated as a function of aboveground standing crop.  This

regression function, originally developed by Chen and Twilley (1999), is derived from

datacollected from 17 mangrove forests in Florida, Puerto Rico and Mexico (R2 = 0.6,

 P < .0001).  The original equation expressed leaf production as a function of basal area, and

was modified to:

maxlgrow = (1.33 + (((cwood/10000)*16)*.292))*100

where:

maxlgrow = maximum leaf production (g d.w. cm2 year-1) and,

cwood = standing crop of wood (g . d.w. cm2)

Annual wood production is set to equal leaf production (Rybczyk and others, 1998). Root

production is simulated as a constant fraction of (0.75) of wood production (Chen and

Twilley, 1999).

Because there is no linked hydrology, hydrodynamics or salt conservation model, elevation

relative to sea level acts as a surrogate for salt and flooding stress on vegetation production in the

primary production submodel.  By employing a simple elevation switching function, simulated

aboveground and belowground annual production decrease with decreasing elevation.

Sediment Dynamics Submodel.  The sediment dynamics submodel has four state

variables, each replicated once in each of 18 soil cohorts:  (1) lab_belown, labile organic matter;
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(2) ref_belown, refractory organic matter; (3) mineraln, mineral matter; and (4) rootn, live root

biomass.  Maximum mineral inputs are the only forcing functions in this submodel, as other

inputs are model generated.  This submodel simulates the decomposition of organic matter, the

inputs of mineral matter, the distribution of root biomass, sediment compaction, and the transfer

of material from cohort to cohort.  These processes are outlined below.  Output includes the

following sediment characteristics with depth:  bulk density, sediment height, organic and

mineral matter mass and volume, pore space, and live root mass.  Changes within the cohort

caused by decomposition and belowground production, which are both a function of model-

generated depth, are calculated on a weekly basis.  Sediment compaction, also calculated weekly,

is a function of initial pore space (a forcing function) and the mass of material above a particular

cohort.  Measurements obtained from soil cores (e.g., bulk density, percent organic matter, and

mineral matter) along with measurement of accretion rates derived from horizon markers, all

collected as part of this study, provide the data which are used to calibrate the submodel at

several points.

Decomposition.  The model separates all organic matter into labile and refractory pools,

each with its own time-dependent decay rate.  Additionally, the labile organic matter

decomposition rate for the surface cohort is separate from the labile decomposition rate for the

rest of the cohorts (allowing for a distinction from leaf and root labile organic matter).  Finally,

there is a separate, depth-dependent decomposition rate for deep refractory material.   A simple

negative exponential (-k) model describes decomposition for each organic matter state variable

in each cohort.  Required decomposition constants include kdeep, klab, kref, leaf_lab_frac,

rlab%, and klabsurf, all described in table 1.
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Mineral Inputs.  Previous models have simulated mineral inputs as a function of wetland

elevation (French, 1993; Callaway and others, 1996).  A similar approach is used here where

mineral inputs are a simple linear function of elevation.

Root Distribution.  Although root production (rootprod) is simulated in the productivity

submodel, root biomass is distributed to the sediment cohorts in the sediment submodel.  We

used an adaptation of the distribution algorithm originally developed by Morris and Bowden

(1986), where root biomass is assumed to be greatest near the surface and decreases

exponentially with depth.  A complete description of this function is provided in Rybczyk and

others (1998).

Sediment Compaction.  Soil compaction is a function of organic matter decomposition

and the reduction of sediment pore space (primary consolidation; Penland and Ramsey, 1990).

Callaway and others (1996) simulated the compaction of pore space as an asymptotic decrease

with depth, bounded by preset minimum and maximum pore space values.  We use a modified

version of Callaway's algorithm, where the decrease in pore space for a given cohort

(pore_spacen) is a function of the mass of material above it.  Again, a complete description of

this function is provided in Rybczyk and others (1998).

Relative Elevation Submodel.  Wetland elevation relative to sea level is simulated as

the balance between ESLR, deep subsidence, shallow subsidence (including decomposition

and compaction), and the accretion of mineral material and organic matter (via root growth
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and litter deposition).  The balance between these factors is then added or subtracted from the

initial wetland elevation at the start of the simulation. The accretion of mineral matter is

modeled explicitly in the sediment dynamics submodel.  Inputs of organic matter are

simulated in the primary productivity submodel.  Shallow subsidence is modeled explicitly

with the decomposition and pore space compaction functions described in the sediment

dynamics submodel.  The combination of inorganic and organic matter accretion,

decomposition, and compaction result in the development of a soil column over simulated

time.  The total height of this column is calculated as the height of the deepest sediment

cohort plus the total height of all overlying cohorts.  The remaining parameters that affect

simulated relative elevation, deep subsidence, and ESLR are entered into the model as forcing

functions.

Model Initialization and Calibration.  The data required for model initialization are shown in

table 1.  Some sediment data (% organic matter and % mineral matter) were collected by

McKee and others, 2002.  However, there were no site-specific data concerning above and

belowground standing crop, above ground production, and leaf litter production. Thus, we

used literature values from similar sites in Central America, Florida, and Mexico (Twilley and

others, 1999; Chen and Twilley, 1999).  After initialization the model was run for 200

simulated years for each site to generate a baseline simulated soil column and a "cyber" space

for roots to grow.  Output from this "presimulation" was then used to initialize the sediment

column state variables for model calibration.
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For calibration the model was first run for an additional 100 years using the same rates and

constants used for initialization. We then used a step-wise calibration procedure (Mitsch and

Reeder, 1991).  The primary production submodel was calibrated first, as this model provided

critical input to the sediment dynamics submodel.  After accurate productivity simulations were

obtained, the submodel was linked to the sediment dynamics submodel.  The sediment dynamics

submodel was calibrated with bulk density, percent organic matter, and percent mineral matter

data obtained from sediment cores collected in the field at each site.

Model Applications. Simulating the preimpact forest. The first objective was to simulate a

stable preimpact mangrove forest (i.e., a forest with a constant elevation relative to RSLR and a

steady to slowly increasing net primary production) that could be used for further simulations.

Since there were few site-specific data concerning aboveground production and standing crop

and belowground standing crop, we utilized data from the existing literature to supplement site-

specific data.

Hurricane Impact.  To simulate the effect of Hurricane Mitch in the interior forest on

Guanaja, we first "turned off" the primary production function (maxlgrow) in the preimpact

model described above.  Additionally, leaf, wood, and root litter functions were modified to

reflect the instantaneous death of all primary producers.  All leaves were instantaneously

pulsed to the forest floor, and all previously live roots were shunted to the soil litter pools

(either as labile or refractory material). In contrast, wood was not fluxed instantaneously to

surface litter components of the model, but rather, was fluxed at a slower rate to reflect the

observations that much of the wood remains as standing dead at the site.
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Since essentially no regeneration has been observed to this point, we ran the impact

model for 10 years (simulated years 1998-2008) with no production inputs.  The model

was run given current sea-level rise rates of 0.15 cm yr-1 (Gornitz, 1995).
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Table 1.  Initialization parameters for the Guanaja sediment elevation model.

Symbol DESCRIPTION Fringe Basin

eslr_c sea-level rise 15.6 cm yr-1 15.6 cm yr-1

init_elev initial wetland elevation 25.3 cm above MLLW 37.5 cm above MLLW

kdeep decomposition rate of deep

refractory organic matter

0.0008 week-1 0.0009 week-1

klab decomposition rate of labile OM1
0.020 week-1 0.025 week-1

klabsurf decomp. rate of surface labile OM1 0.30 week-1 0.30 week-1

kref decomp. rate of refractory OM1
0.0007 week-1 0.0009 week-1

leaf_lab_frac labile fraction of aboveground

biomass

50 % 50 %

max_min_in maximum mineral input 0.00074 g cm-2 week-1 0.00074 g cm-2 week-1

poremax max. fraction of pore space in soil 94% 94 %

poremin min. fraction of pore space in soil 88 % 88 %

rlab% labile fraction of live roots 15 % 15 %

root_k root distribution constant 0.02 cm-1 0.02 cm-1

rootmult root to shoot ratio 0.75 unitless 0.75 unitless

surate local deep subsidence rate .0033 cm week-1 .0033 cm week-1

1 organic matter
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