9 research outputs found

    Effects of Yoga on Arm Volume among Women with Breast Cancer Related Lymphedema: A Pilot Study

    Get PDF
    Lymphedema affects 3–58% of survivors of breast cancer and can result in upper extremity impairments. Exercise can be beneficial in managing lymphedema. Yoga practice has been minimally studied for its effects on breast cancer related lymphedema (BCRL). The purpose of this study was to determine the effect of yoga on arm volume, quality of life (QOL), self-reported arm function, and hand grip strength in women with BCRL. Six women with BCRL participated in modified Hatha yoga 3×/week for 8 weeks. Compression sleeves were worn during yoga sessions. Arm volume, QOL, self-reported arm function, and hand grip strength were measured at baseline, half-way, and at the conclusion of yoga practice. Arm volume significantly decreased from baseline (2423.3 ml ± 597.2) to final measures (2370.8 ml ± 577.2) (p = .02). No significant changes in QOL (p = .12), self-reported arm function (p = .34), or hand grip strength (p = .26) were found. Yoga may be beneficial in the management of lymphedema

    Association of Circulating Tumor DNA Testing Before Tissue Diagnosis With Time to Treatment Among Patients With Suspected Advanced Lung Cancer: The ACCELERATE Nonrandomized Clinical Trial.

    Get PDF
    IMPORTANCE Liquid biopsy has emerged as a complement to tumor tissue profiling for advanced non-small cell lung cancer (NSCLC). The optimal way to integrate liquid biopsy into the diagnostic algorithm for patients with newly diagnosed advanced NSCLC remains unclear. OBJECTIVE To evaluate the use of circulating tumor DNA (ctDNA) genotyping before tissue diagnosis among patients with suspected advanced NSCLC and its association with time to treatment. DESIGN, SETTING, AND PARTICIPANTS This single-group nonrandomized clinical trial was conducted among 150 patients at the Princess Margaret Cancer Centre-University Health Network (Toronto, Ontario, Canada) between July 1, 2021, and November 30, 2022. Patients referred for investigation and diagnosis of lung cancer were eligible if they had radiologic evidence of advanced lung cancer prior to a tissue diagnosis. INTERVENTIONS Patients underwent plasma ctDNA testing with a next-generation sequencing (NGS) assay before lung cancer diagnosis. Diagnostic biopsy and tissue NGS were performed per standard of care. MAIN OUTCOME AND MEASURES The primary end point was time from referral to treatment initiation among patients with advanced nonsquamous NSCLC using ctDNA testing before diagnosis (ACCELERATE [Accelerating Lung Cancer Diagnosis Through Liquid Biopsy] cohort). This cohort was compared with a reference cohort using standard tissue genotyping after tissue diagnosis. RESULTS Of the 150 patients (median age at diagnosis, 68 years [range, 33-91 years]; 80 men [53%]) enrolled, 90 (60%) had advanced nonsquamous NSCLC. The median time to treatment was 39 days (IQR, 27-52 days) for the ACCELERATE cohort vs 62 days (IQR, 44-82 days) for the reference cohort (P < .001). Among the ACCELERATE cohort, the median turnaround time from sample collection to genotyping results was 7 days (IQR, 6-9 days) for plasma and 23 days (IQR, 18-28 days) for tissue NGS (P < .001). Of the 90 patients with advanced nonsquamous NSCLC, 21 (23%) started targeted therapy before tissue NGS results were available, and 11 (12%) had actionable alterations identified only through plasma testing. CONCLUSIONS AND RELEVANCE This nonrandomized clinical trial found that the use of plasma ctDNA genotyping before tissue diagnosis among patients with suspected advanced NSCLC was associated with accelerated time to treatment compared with a reference cohort undergoing standard tissue testing. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT04863924

    sj-pdf-1-vdi-10.1177_10406387221146247 – Supplemental material for Immunohistochemical analysis of expression of VEGFR2, KIT, PDGFR-ÎČ, and CDK4 in canine urothelial carcinoma

    No full text
    Supplemental material, sj-pdf-1-vdi-10.1177_10406387221146247 for Immunohistochemical analysis of expression of VEGFR2, KIT, PDGFR-ÎČ, and CDK4 in canine urothelial carcinoma by Laura C. Setyo, Shannon L. Donahoe, Patrick L. Shearer, Penghao Wang and Mark B. Krockenberger in Journal of Veterinary Diagnostic Investigation</p

    Oropharyngeal Shedding of Gammaherpesvirus DNA by Cats, and Natural Infection of Salivary Epithelium

    No full text
    Felis catus gammaherpesvirus-1 (FcaGHV1), a novel candidate oncogenic virus, infects cats worldwide. Whether the oropharynx is a site of virus shedding and persistence, and whether oronasal carcinomas harbor FcaGHV1 nucleic acid were investigated. In a prospective molecular epidemiological study, FcaGHV1 DNA was detected by cPCR in oropharyngeal swabs from 26/155 (16.8%) of cats. Oropharyngeal shedding was less frequently detected in kittens &le;3 months of age (5/94, 5.3%) than in older animals; &gt;3 months to &le;1 year: 8/26, 30.8%, (p = 0.001, OR 7.91, 95% CI (2.320, 26.979)); &gt;1 year to &le;6 years: 10/20, 50%, (p &lt; 0.001, OR 17.8 95% CI (5.065, 62.557)); &gt;6 years: 3/15, 33% (p = 0.078). Provenance (shelter-owned/privately owned) was not associated with shedding. In situ hybridization (ISH) identified FcaGHV1-infected cells in salivary glandular epithelium but not in other oronasal tissues from two of three cats shedding viral DNA in the oropharynx. In a retrospective dataset of 11 oronasopharyngeal carcinomas, a single tumor tested positive for FcaGHV1 DNA by ISH, a papillary carcinoma, where scattered neoplastic cells showed discrete nuclear hybridization. These data support the oronasopharynx as a site of FcaGHV1 shedding, particularly after maternal antibodies are expected to decline. The salivary epithelium is identified as a potential site of FcaGHV1 persistence. No evidence supporting a role for FcaGHV1 in feline oronasal carcinomas was found in the examined tumours

    Plasma-first: accelerating lung cancer diagnosis and molecular profiling through liquid biopsy

    No full text
    Introduction: Molecular profiling of tumor tissue is the gold standard for treatment decision-making in advanced non-small cell lung cancer (NSCLC). Results may be delayed or unavailable due to insufficient tissue, prolonged wait times for biopsy, pathology assessment and testing. We piloted the use of plasma testing in the initial diagnostic workup for patients with suspected advanced lung cancer. Methods: Patients with â©œ15 pack-year smoking history and suspected advanced lung cancer referred to the lung cancer rapid diagnostic program underwent plasma circulating-tumor DNA testing using a DNA-based mutation panel. Tissue testing was performed per standard of care, including comprehensive next-generation sequencing (NGS). The primary endpoint was time from diagnostic program referral to cancer treatment in stage IV NSCLC patients (Cohort A) compared to a contemporary cohort not enrolled in the study (Cohort B) and an historical pre-COVID cohort referred to the program between 2018 and 2019 (Cohort C). Results: From January to June 2021, 20 patients were enrolled in Cohort A; median age was 70.5 years (range 33–87), 70% were female, 55% Caucasian, 85% never smokers, and 75% were diagnosed with NSCLC. Seven had actionable alterations detected in plasma or tissue (4/7 concordant). Fusions, not tested in plasma, were identified by immunohistochemistry for three patients. Mean result turnaround time was 17.8 days for plasma NGS and 23.6 days for tissue ( p  = 0.10). Mean time from referral to treatment initiation was significantly shorter in cohort A at 32.6 days (SD 13.1) versus 62.2 days (SD 31.2) in cohort B and 61.5 days (SD 29.1) in cohort C, both p  < 0.0001. Conclusion: Liquid biopsy in the initial diagnostic workup of patients with suspected advanced NSCLC can lead to faster molecular results and shorten time to treatment even with smaller DNA panels. An expansion study using comprehensive NGS plasma testing with faster turnaround time is ongoing (NCT04862924)

    sj-docx-1-tam-10.1177_17588359221126151 – Supplemental material for Plasma-first: accelerating lung cancer diagnosis and molecular profiling through liquid biopsy

    No full text
    Supplemental material, sj-docx-1-tam-10.1177_17588359221126151 for Plasma-first: accelerating lung cancer diagnosis and molecular profiling through liquid biopsy by Miguel Garcia-Pardo, Kasia Czarnecka, Jennifer H. Law, Alexandra Salvarrey, Roxanne Fernandes, Jason Fan, Lucy Corke, Thomas K. Waddell, Kazuhiro Yasufuku, Laura L. Donahoe, Andrew Pierre, Lisa W. Le, Noor Ghumman, Geoffrey Liu, Frances A. Shepherd, Penelope Bradbury, Adrian Sacher, Tracy Stockley, Prodipto Pal, Patrik Rogalla, Ming Sound Tsao and Natasha B. Leighl in Therapeutic Advances in Medical Oncology</p

    Age, sex, colour and disability discrimination in America

    No full text

    A global metagenomic map of urban microbiomes and antimicrobial resistance

    No full text
    We present a global atlas of 4,728 metagenomic samples from mass-transit systems in 60 cities over 3 years, representing the first systematic, worldwide catalog of the urban microbial ecosystem. This atlas provides an annotated, geospatial profile of microbial strains, functional characteristics, antimicrobial resistance (AMR) markers, and genetic elements, including 10,928 viruses, 1,302 bacteria, 2 archaea, and 838,532 CRISPR arrays not found in reference databases. We identified 4,246 known species of urban microorganisms and a consistent set of 31 species found in 97% of samples that were distinct from human commensal organisms. Profiles of AMR genes varied widely in type and density across cities. Cities showed distinct microbial taxonomic signatures that were driven by climate and geographic differences. These results constitute a high-resolution global metagenomic atlas that enables discovery of organisms and genes, highlights potential public health and forensic applications, and provides a culture-independent view of AMR burden in cities.Funding: the Tri-I Program in Computational Biology and Medicine (CBM) funded by NIH grant 1T32GM083937; GitHub; Philip Blood and the Extreme Science and Engineering Discovery Environment (XSEDE), supported by NSF grant number ACI-1548562 and NSF award number ACI-1445606; NASA (NNX14AH50G, NNX17AB26G), the NIH (R01AI151059, R25EB020393, R21AI129851, R35GM138152, U01DA053941); STARR Foundation (I13- 0052); LLS (MCL7001-18, LLS 9238-16, LLS-MCL7001-18); the NSF (1840275); the Bill and Melinda Gates Foundation (OPP1151054); the Alfred P. Sloan Foundation (G-2015-13964); Swiss National Science Foundation grant number 407540_167331; NIH award number UL1TR000457; the US Department of Energy Joint Genome Institute under contract number DE-AC02-05CH11231; the National Energy Research Scientific Computing Center, supported by the Office of Science of the US Department of Energy; Stockholm Health Authority grant SLL 20160933; the Institut Pasteur Korea; an NRF Korea grant (NRF-2014K1A4A7A01074645, 2017M3A9G6068246); the CONICYT Fondecyt Iniciación grants 11140666 and 11160905; Keio University Funds for Individual Research; funds from the Yamagata prefectural government and the city of Tsuruoka; JSPS KAKENHI grant number 20K10436; the bilateral AT-UA collaboration fund (WTZ:UA 02/2019; Ministry of Education and Science of Ukraine, UA:M/84-2019, M/126-2020); Kyiv Academic Univeristy; Ministry of Education and Science of Ukraine project numbers 0118U100290 and 0120U101734; Centro de Excelencia Severo Ochoa 2013–2017; the CERCA Programme / Generalitat de Catalunya; the CRG-Novartis-Africa mobility program 2016; research funds from National Cheng Kung University and the Ministry of Science and Technology; Taiwan (MOST grant number 106-2321-B-006-016); we thank all the volunteers who made sampling NYC possible, Minciencias (project no. 639677758300), CNPq (EDN - 309973/2015-5), the Open Research Fund of Key Laboratory of Advanced Theory and Application in Statistics and Data Science – MOE, ECNU, the Research Grants Council of Hong Kong through project 11215017, National Key RD Project of China (2018YFE0201603), and Shanghai Municipal Science and Technology Major Project (2017SHZDZX01) (L.S.
    corecore