113 research outputs found

    Rapid Detection of the Varicella Zoster Virus in Saliva

    Get PDF
    Varicella zoster virus (VZV) causes chicken pox on first exposure (usually in children), and reactivates from latency causing shingles (usually in adults). Shingles can be extremely painful, causing nerve damage, organ damage, and blindness in some cases. The virus can be life-threatening in immune-compromised individuals. The virus is very difficult to culture for diagnosis, requiring a week or longer. This invention is a rapid test for VZV from a saliva sample and can be performed in a doctor s office. The kit is small, compact, and lightweight. Detec tion is sensitive, specific, and noninvasive (no needles); only a saliva sample is required. The test provides results in minutes. The entire test is performed in a closed system, with no exposure to infectious materials. The components are made mostly of inexpensive plastic injection molded parts, many of which can be purchased off the shelf and merely assembled. All biological waste is contained for fast, efficient disposal. This innovation was made possible because of discovery of a NASA scientists flight experiment showing the presence of VZV in saliva during high stress periods and disease. This finding enables clinicians to quickly screen patients for VZV and treat the ones that show positive results with antiviral medicines. This promotes a rapid recovery, easing of pain and symptoms, and reduces chances of complications from zoster. Screening of high-risk patients could be incorporated as part of a regular physical exam. These patients include the elderly, pregnant women, and immune-compromised individuals. In these patients, VZV can be a life-threatening disease. In both high- and low-risk patients, early detection and treatment with antiviral drugs can dramatically decrease or even eliminate the clinical manifestation of disease

    Characterization of Escherichia coli MG1655 grown in a low-shear modeled microgravity environment

    Get PDF
    BACKGROUND: Extra-cellular shear force is an important environmental parameter that is significant both medically and in the space environment. Escherichia coli cells grown in a low-shear modeled microgravity (LSMMG) environment produced in a high aspect rotating vessel (HARV) were subjected to transcriptional and physiological analysis. RESULTS: Aerobic LSMMG cultures were grown in rich (LB) and minimal (MOPS + glucose) medium with a normal gravity vector HARV control. Reproducible changes in transcription were seen, but no specific LSMMG responsive genes were identified. Instead, absence of shear and a randomized gravity vector appears to cause local extra-cellular environmental changes, which elicit reproducible cellular responses. In minimal media, the majority of the significantly up- or down-regulated genes of known function were associated with the cell envelope. In rich medium, most LSMMG down-regulated genes were involved in translation. No observable changes in post-culture stress responses and antibiotic sensitivity were seen in cells immediately after exposure to LSMMG. Comparison with earlier studies of Salmonella enterica serovar Typhimurium conducted under similar growth conditions, revealed essentially no similarity in the genes that were significantly up- or down-regulated. CONCLUSION: Comparison of these results to previous studies suggests that different organisms may dramatically differ in their responses to medically significant low-shear and space environments. Depending on their specific response, some organisms, such as Salmonella, may become preadapted in a manner that predisposes them to increased virulence

    The Iowa Homemaker vol.41, no.7

    Get PDF
    Foolproof Bachelor Budget, Gaylin Morgan, page 4 A “Lone Male”, Joy Reese, page 5 It All Started With ADAM, Sherry Stoddard, page 6 Going Forth, Dan Taylor, page 9 Bottled Beauty Since 1600 B.C., Diane Sharbo, page 10 What’s the Matter?, Bob MacDonough, page 11 The Awful Beginning, Don Wishart, page 12 Found: Scientific Formula for Women, page 15 When Men Entertain, Sylvia Noid, page 16 The Man Behind “the lady from Hancock”, LaVeda Jansonius, page 16 “We Want Steak!”, Barb Pierson, page 1

    Selection of patients for heart transplantationin the current era of heart failure therapy

    Get PDF
    AbstractObjectivesWe sought to assess the relationship between survival, peak exercise oxygen consumption (Vo2), and heart failure survival score (HFSS) in the current era of heart failure (HF) therapy.BackgroundBased on predicted survival, HF patients with peak Vo2<14 ml/min/kg or medium- to high-risk HFSS are currently considered eligible for heart transplantation. However, these criteria were developed before the widespread use of beta-blockers, spironolactone, and defibrillators—interventions known to improve the survival of HF patients.MethodsPeak Vo2and HFSS were assessed in 320 patients followed from 1994 to 1997 (past era) and in 187 patients followed from 1999 to 2001 (current era). Outcomes were compared between these two groups of patients and those who underwent heart transplantation from 1993 to 2000.ResultsSurvival in the past era was 78% at one year and 67% at two years, as compared with 88% and 79%, respectively, in the current era (both p < 0.01). One-year event-free survival (without urgent transplantation or left ventricular assist device) was improved in the current era, regardless of initial peak Vo2: 64% vs. 48% for peak Vo2<10 ml/min/kg (p = 0.09), 81% vs. 70% for 10 to 14 ml/min/kg (p = 0.05), and 93% vs. 82% for >14 ml/min/kg (p = 0.04). Of the patients with peak Vo2of 10 to 14 ml/min/kg, 55% had low-risk HFSS and exhibited 88% one-year event-free survival. One-year survival after transplantation was 88%, which is similar to the 85% rate reported by the United Network for Organ Sharing for 1999 to 2000.ConclusionsSurvival for HF patients in the current era has improved significantly, necessitating re-evaluation of the listing criteria for heart transplantation

    Campus Vol VII N 1

    Get PDF
    Howard Studio. Janet Cuddy, Freshman . Picture. 0. Clopp, Joy. Cocoon . Prose. 3. Dake, Hart and Don Shackelford. F-L-A-S-H . Prose. 4. Jacobs, Edward, R. The Legacy . Prose. 5. Martin, Lynn. Oh, To Be A Freshman! . Prose. 6. Dutro, Jacquie. A Glimpse Behind The Scenes At Homecoming . Prose. 8. Hawk, Pete. Earl and Claude Go See Some Pictures . Prose. 10. Umphrey, Shirley. The Wedding . Prose. 11. Brunning, Lolly. The Story of a Russian Family . Prose. 12. Potts. Untitled. Cartoon. 14.; Potts. Untitled. Cartoon. 15. Pierson, Pete. Famous Last Words . Cartoon. 16. Hawk, Pete. The Laugh\u27s The Thing- . Prose. 17. Niland, Dave. Untitled. Cartoon. 16

    Breed Locally, Disperse Globally: Fine-Scale Genetic Structure Despite Landscape-Scale Panmixia in a Fire- Specialist

    Get PDF
    Abstract An exciting advance in the understanding of metapopulation dynamics has been the investigation of how populations respond to ephemeral patches that go &apos;extinct&apos; during the lifetime of an individual. Previous research has shown that this scenario leads to genetic homogenization across large spatial scales. However, little is known about fine-scale genetic structuring or how this changes over time in ephemeral patches. We predicted that species that specialize on ephemeral habitats will delay dispersal to exploit natal habitat patches while resources are plentiful and thus display fine-scale structure. To investigate this idea, we evaluated the effect of frequent colonization of ephemeral habitats on the fine-scale genetic structure of a fire specialist, the black-backed woodpecker (Picoides arcticus) and found a pattern of fine-scale genetic structure. We then tested for differences in spatial structure between sexes and detected a pattern consistent with male-biased dispersal. We also detected a temporal increase in relatedness among individuals within newly burned forest patches. Our results indicate that specialist species that outlive their ephemeral patches can accrue significant fine-scale spatial structure that does not necessarily affect spatial structure at larger scales. This highlights the importance of both spatial and temporal scale considerations in both sampling and data interpretation of molecular genetic results. Citation: Pierson JC, Allendorf FW, Drapeau P, Schwartz MK (2013) Breed Locally, Disperse Globally: Fine-Scale Genetic Structure Despite Landscape-Scale Panmixia in a Fire-Specialist. PLoS ONE 8(6): e67248

    Drivers of phytoplankton responses to summer wind events in a stratified lake: A modeling study

    Get PDF
    Extreme wind events affect lake phytoplankton by deepening the mixed layer and increasing internal nutrient loading. Both increases and decreases in phytoplankton concentration after strong wind events have been observed, but the precise mechanisms driving these responses remain poorly understood or quantified. We coupled a one-dimensional physical model to a biogeochemical model to investigate the factors regulating short-term phytoplankton responses to summer wind events, now and under expected warmer future conditions. We simulated physical, chemical, and biological dynamics in Lake Erken, Sweden, and found that strong wind could increase or decrease the phytoplankton concentration in the euphotic zone 1 week after the event, depending on antecedent lake physical and chemical conditions. Wind had little effect on phytoplankton concentration if the mixed layer was deep prior to wind exposure. Higher incoming shortwave radiation and hypolimnetic nutrient concentration boosted phytoplankton concentration, whereas higher surface water temperatures decreased concentrations after wind events. Medium-intensity wind events resulted in more phytoplankton than high-intensity wind. Simulations under a future climate scenario did not show marked differences in the way wind events affect phytoplankton concentration. These findings help to better understand how wind impacts vary as a function of local environmental conditions and how climate warming and changing extreme weather dynamics will affect lake ecosystems

    Drivers of phytoplankton responses to summer wind events in a stratified lake: A modeling study

    Get PDF
    Extreme wind events affect lake phytoplankton by deepening the mixed layer and increasing internal nutrient loading. Both increases and decreases in phytoplankton concentration after strong wind events have been observed, but the precise mechanisms driving these responses remain poorly understood or quantified. We coupled a one-dimensional physical model to a biogeochemical model to investigate the factors regulating short-term phytoplankton responses to summer wind events, now and under expected warmer future conditions. We simulated physical, chemical, and biological dynamics in Lake Erken, Sweden, and found that strong wind could increase or decrease the phytoplankton concentration in the euphotic zone 1 week after the event, depending on antecedent lake physical and chemical conditions. Wind had little effect on phytoplankton concentration if the mixed layer was deep prior to wind exposure. Higher incoming shortwave radiation and hypolimnetic nutrient concentration boosted phytoplankton concentration, whereas higher surface water temperatures decreased concentrations after wind events. Medium-intensity wind events resulted in more phytoplankton than high-intensity wind. Simulations under a future climate scenario did not show marked differences in the way wind events affect phytoplankton concentration. These findings help to better understand how wind impacts vary as a function of local environmental conditions and how climate warming and changing extreme weather dynamics will affect lake ecosystems

    Lysosomal abnormalities in hereditary spastic paraplegia types SPG15 and SPG11

    Get PDF
    Objective Hereditary spastic paraplegias (HSPs) are among the most genetically diverse inherited neurological disorders, with over 70 disease loci identified (SPG1-71) to date. SPG15 and SPG11 are clinically similar, autosomal recessive disorders characterized by progressive spastic paraplegia along with thin corpus callosum, white matter abnormalities, cognitive impairment, and ophthalmologic abnormalities. Furthermore, both have been linked to early-onset parkinsonism. Methods We describe two new cases of SPG15 and investigate cellular changes in SPG15 and SPG11 patient-derived fibroblasts, seeking to identify shared pathogenic themes. Cells were evaluated for any abnormalities in cell division, DNA repair, endoplasmic reticulum, endosomes, and lysosomes. Results Fibroblasts prepared from patients with SPG15 have selective enlargement of LAMP1-positive structures, and they consistently exhibited abnormal lysosomal storage by electron microscopy. A similar enlargement of LAMP1-positive structures was also observed in cells from multiple SPG11 patients, though prominent abnormal lysosomal storage was not evident. The stabilities of the SPG15 protein spastizin/ZFYVE26 and the SPG11 protein spatacsin were interdependent. Interpretation Emerging studies implicating these two proteins in interactions with the late endosomal/lysosomal adaptor protein complex AP-5 are consistent with shared abnormalities in lysosomes, supporting a converging mechanism for these two disorders. Recent work withZfyve26−/− mice revealed a similar phenotype to human SPG15, and cells in these mice had endolysosomal abnormalities. SPG15 and SPG11 are particularly notable among HSPs because they can also present with juvenile parkinsonism, and this lysosomal trafficking or storage defect may be relevant for other forms of parkinsonism associated with lysosomal dysfunction
    • 

    corecore