380 research outputs found

    The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes

    Get PDF
    All plants are inhabited internally by diverse microbial communities comprising bacterial, archaeal, fungal, and protistic taxa. These microorganisms showing endophytic lifestyles play crucial roles in plant development, growth, fitness, and diversification. The increasing awareness of and information on endophytes provide insight into the complexity of the plant microbiome. The nature of plant-endophyte interactions ranges from mutualism to pathogenicity. This depends on a set of abiotic and biotic factors, including the genotypes of plants and microbes, environmental conditions, and the dynamic network of interactions within the plant biome. In this review, we address the concept of endophytism, considering the latest insights into evolution, plant ecosystem functioning, and multipartite interactions.EU Cost Action [FA1103, 312117]; FWF (Austrian Science Foundation) [P26203-B22, P24569-B25]; Portuguese FCT (Foundation for Science and Technology) [SFRH/BPD/78931/2011]info:eu-repo/semantics/publishedVersio

    A revision of Cyanonectria and Geejayessia gen. nov., and related species with Fusarium-like anamorphs

    Get PDF
    A revision of Fusarium-like species associated with the plant genus Buxus led to a reconsideration of generic concepts in the Fusarium clade of the Nectriaceae. Phylogenetic analyses of the partial second largest subunit of the RNA polymerase II (rpb2) and the larger subunit of the ATP citrate lyase (acl1) gene exons confirm the existence of a clade, here called the terminal Fusarium clade, that includes genera such as Fusarium sensu stricto (including its Gibberella teleomorphs), Albonectria, Cyanonectria, “Haematonectria”, the newly described genus Geejayessia, and “Nectria” albida. Geejayessia accommodates five species. Four were previously classified in Nectria sensu lato, namely the black perithecial, KOH–species G. atrofusca and the orange or reddish, KOH+ G. cicatricum, G. desmazieri and G. zealandica. Geejayessia celtidicola is newly described. Following our phylogenetic analyses showing its close relationship with Cyanonectria cyanostoma, the former Gibbera buxi is recombined as the second species of Cyanonectria. A three gene phylogenetic analysis of multiple strains of each morphological species using translation elongation factor 1 α (tef-1), rpb2 and acl1 gene exons and introns confirms their status as distinct phylogenetic species. Internal transcribed spacer of the ribosomal RNA gene cluster and nuclear large ribosomal subunit sequences were generated as additional DNA barcodes for selected strains. The connection of Fusarium buxicola, often erroneously reported as the anamorph of G. desmazieri, with the bluish black and KOH+ perithecial species C. buxi is reinstated. Most Cyanonectria and Geejayessia species exhibit restricted host ranges on branches or twigs of Buxus species, Celtis occidentalis, or Staphylea trifolia. Their perithecia form caespitose clusters on well-developed, mostly erumpent stromata on the bark or outer cortex of the host and are relatively thin-walled, mostly smooth, and therefore reminiscent of the more or less astromatous, singly occurring perithecia of Cosmospora, Dialonectria, and Microcera. The cell walls in outer- and inner layers of the perithecial walls of Cyanonectria and Geejayessia have inconspicuous pore-like structures, as do representative species of Albonectria, Fusarium sensu stricto, “Haematonectria”, and “Nectria” albida. The taxonomic significance of these structures, which we call Samuels' pores, is discussed

    Adaptive Melanin Response of the Soil Fungus Aspergillus niger to UV Radiation Stress at “Evolution Canyon”, Mount Carmel, Israel

    Get PDF
    BACKGROUND:Adaptation is an evolutionary process in which traits in a population are tailored by natural selection to better meet the challenges presented by the local environment. The major discussion relating to natural selection concerns the portraying of the cause and effect relationship between a presumably adaptive trait and selection agents generating it. Therefore, it is necessary to identify trait(s) that evolve in direct response to selection, enhancing the organism's fitness. "Evolution Canyon" (EC) in Israel mirrors a microcosmic evolutionary system across life and is ideal to study natural selection and local adaptation under sharply, microclimatically divergent environments. The south-facing, tropical, sunny and xeric "African" slope (AS) receives 200%-800% higher solar radiation than the north-facing, temperate, shady and mesic "European" slope (ES), 200 meters apart. Thus, solar ultraviolet radiation (UVR) is a major selection agent in EC influencing the organism-environment interaction. Melanin is a trait postulated to have evolved for UV-screening in microorganisms. Here we investigate the cause and effect relationship between differential UVR on the opposing slopes of EC and the conidial melanin concentration of the filamentous soil fungus Aspergillus niger. We test the working hypothesis that the AS strains exhibit higher melanin content than strains from the ES resulting in higher UV resistance. METHODOLOGY/PRINCIPAL FINDINGS:We measured conidial melanin concentration of 80 strains from the EC using a spectrophotometer. The results indicated that mean conidial melanin concentration of AS strains were threefold higher than ES strains and the former resisted UVA irradiation better than the latter. Comparisons of melanin in the conidia of A. niger strains from sunny and shady microniches on the predominantly sunny AS and predominantly shady ES indicated that shady conditions on the AS have no influence on the selection on melanin; in contrast, the sunny strains from the ES displayed higher melanin concentrations. CONCLUSIONS/SIGNIFICANCE:We conclude that melanin in A. niger is an adaptive trait against UVR generated by natural selection

    Growth and Asymmetry of Soil Microfungal Colonies from “Evolution Canyon,” Lower Nahal Oren, Mount Carmel, Israel

    Get PDF
    Fluctuating asymmetry is a contentious indicator of stress in populations of animals and plants. Nevertheless, it is a measure of developmental noise, typically obtained by measuring asymmetry across an individual organism's left-right axis of symmetry. These individual, signed asymmetries are symmetrically distributed around a mean of zero. Fluctuating asymmetry, however, has rarely been studied in microorganisms, and never in fungi.We examined colony growth and random phenotypic variation of five soil microfungal species isolated from the opposing slopes of “Evolution Canyon,” Mount Carmel, Israel. This canyon provides an opportunity to study diverse taxa inhabiting a single microsite, under different kinds and intensities of abiotic and biotic stress. The south-facing “African” slope of “Evolution Canyon” is xeric, warm, and tropical. It is only 200 m, on average, from the north-facing “European” slope, which is mesic, cool, and temperate. Five fungal species inhabiting both the south-facing “African” slope, and the north-facing “European” slope of the canyon were grown under controlled laboratory conditions, where we measured the fluctuating radial asymmetry and sizes of their colonies. from the “African” slope were more asymmetric than those from the “European” slope.Our study suggests that fluctuating radial asymmetry has potential as an indicator of random phenotypic variation and stress in soil microfungi. Interaction of slope and species for both growth rate and asymmetry of microfungi in a common environment is evidence of genetic differences between the “African” and “European” slopes of “Evolution Canyon.

    An overview of the taxonomy, phylogeny, and typification of nectriaceous fungi in Cosmospora, Acremonium, Fusarium, Stilbella, and Volutella

    Get PDF
    A comprehensive phylogenetic reassessment of the ascomycete genus Cosmospora (Hypocreales, Nectriaceae) is undertaken using fresh isolates and historical strains, sequences of two protein encoding genes, the second largest subunit of RNA polymerase II (rpb2), and a new phylogenetic marker, the larger subunit of ATP citrate lyase (acl1). The result is an extensive revision of taxonomic concepts, typification, and nomenclatural details of many anamorph- and teleomorph-typified genera of the Nectriaceae, most notably Cosmospora and Fusarium. The combined phylogenetic analysis shows that the present concept of Fusarium is not monophyletic and that the genus divides into two large groups, one basal in the family, the other terminal, separated by a large group of species classified in genera such as Calonectria, Neonectria, and Volutella. All accepted genera received high statistical support in the phylogenetic analyses. Preliminary polythetic morphological descriptions are presented for each genus, providing details of perithecia, micro- and/or macro-conidial synanamorphs, cultural characters, and ecological traits. Eight species are included in our restricted concept of Cosmospora, two of which have previously documented teleomorphs and all of which have Acremonium-like microconidial anamorphs. A key is provided to the three anamorphic species recognised in Atractium, which is removed from synonymy with Fusarium and epitypified for two macroconidial synnematous species and one sporodochial species associated with waterlogged wood. Dialonectria is recognised as distinct from Cosmospora and two species with teleomorph, macroconidia and microconidia are accepted, including the new species D. ullevolea. Seven species, one with a known teleomorph, are classified in Fusicolla, formerly considered a synonym of Fusarium including members of the F. aquaeductuum and F. merismoides species complex, with several former varieties raised to species rank. Originally a section of Nectria, Macroconia is raised to generic rank for five species, all producing a teleomorph and macroconidial anamorph. A new species of the Verticillium-like anamorphic genus Mariannaea is described as M. samuelsii. Microcera is recognised as distinct from Fusarium and a key is included for four macroconidial species, that are usually parasites of scale insects, two of them with teleomorphs. The four accepted species of Stylonectria each produce a teleomorph and micro- and macroconidial synanamorphs. The Volutella species sampled fall into three clades. Pseudonectria is accepted for a perithecial and sporodochial species that occurs on Buxus. Volutella s. str. also includes perithecial and/or sporodochial species and is revised to include a synnematous species formerly included in Stilbella. The third Volutella-like clade remains unnamed. All fungi in this paper are named using a single name system that gives priority to the oldest generic names and species epithets, irrespective of whether they are originally based on anamorph or teleomorph structures. The rationale behind this is discussed

    Community profiling and gene expression of fungal assimilatory nitrate reductases in agricultural soil

    Get PDF
    Although fungi contribute significantly to the microbial biomass in terrestrial ecosystems, little is known about their contribution to biogeochemical nitrogen cycles. Agricultural soils usually contain comparably high amounts of inorganic nitrogen, mainly in the form of nitrate. Many studies focused on bacterial and archaeal turnover of nitrate by nitrification, denitrification and assimilation, whereas the fungal role remained largely neglected. To enable research on the fungal contribution to the biogeochemical nitrogen cycle tools for monitoring the presence and expression of fungal assimilatory nitrate reductase genes were developed. To the ∼100 currently available fungal full-length gene sequences, another 109 partial sequences were added by amplification from individual culture isolates, representing all major orders occurring in agricultural soils. The extended database led to the discovery of new horizontal gene transfer events within the fungal kingdom. The newly developed PCR primers were used to study gene pools and gene expression of fungal nitrate reductases in agricultural soils. The availability of the extended database allowed affiliation of many sequences to known species, genera or families. Energy supply by a carbon source seems to be the major regulator of nitrate reductase gene expression for fungi in agricultural soils, which is in good agreement with the high energy demand of complete reduction of nitrate to ammonium
    corecore