4 research outputs found

    Bond and charge density waves in the isotropic interacting two-dimensional quarter-filled band and the insulating state proximate to organic superconductivity

    Full text link
    We report two surprising results regarding the nature of the spatial broken symmetries in the two-dimensional (2D), quarter-filled band with strong electron-electron interactions. First, in direct contradiction to the predictions of one-electron theory, we find a coexisting ``bond-order and charge density wave'' (BCDW) insulating ground state in the 2D rectangular lattice for all anisotropies, including the isotropic limit. Second, we find that the BCDW further coexists with a spin-density wave (SDW) in the range of large anisotropy. Further, in contrast to the interacting half-filled band, in the interacting quarter-filled band there are two transitions: first, a similar singlet-to-AFM/SDW transition for large anisotropy and second, an AFM/SDW-to-singlet transition at smaller anisotropy. We discuss how these theoretical results apply to the insulating states that are proximate to the superconducting states of 2:1 cationic charge-transfer solids (CTS). An important consequence of this work is the suggestion that organic superconductivity is related to the proximate Coulomb-induced BCDW, with the SDW that coexists for large anisotropies being also a consequence of the BCDW, rather than the driver of superconductivity.Comment: 29 pages, 18 eps figures. Revised with new appendices; to appear in Phys. Rev. B 62, Nov 15, 200
    corecore