621 research outputs found

    Self-starting capability of a Darrieus turbine

    Get PDF
    Darrieus-type vertical axis wind turbines have a number of potential advantages for small-scale and domestic applications. For such applications, the issues of cost and reliability are paramount and hence simplicity of design of the structure, the generator, and any control system is vital. A particular concern relating to Darrieus turbines is their potential to self-start. If, as has been suggested by several authors, they require external assistance to start then much of their advantage is lost. The purpose of the study described here is, therefore, to investigate their starting performance through the development and validation of computational simulation and to determine the parameters that govern the capability to self-start. A case study is presented based upon the use of the widely used and well documented, symmetrical NACA 0012 turbine blade profile. It is shown that a lightly loaded, three-bladed rotor always has the potential to self start under steady wind conditions, whereas the starting of a two-bladed device is dependent upon its initial starting orientation

    Plastid redox state and sugars: Interactive regulators of nuclear-encoded photosynthetic gene expression

    Get PDF
    Feedback regulation of photosynthesis by carbon metabolites has long been recognized, but the underlying cellular mechanisms that control this process remain unclear. By using an Arabidopsis cell culture, we show that a block in photosynthetic electron flux prevents the increase in transcript levels of chlorophyll a/b-binding protein and the small subunit of Rubisco that typically occurs when intracellular sugar levels are depleted. In contrast, the expression of the nitrate reductase gene, which is induced by sugars, is not affected. These findings were confirmed in planta by using Arabidopsis carrying the firefly luciferase reporter gene fused to the plastocyanin and chlorophyll a/b-binding protein 2 gene promoters. Transcription from both promoters increases on carbohydrate depletion. Blocking photosynthetic electron transport with 3-(3',4'-dichlorophenyl)-1,1'-dimethylurea prevents this increase in transcription. We conclude that plastid-derived redox signaling can override the sugar-regulated expression of nuclear-encoded photosynthetic genes. In the sugar-response mutant, sucrose uncoupled 6 (sun6), plastocyanin-firefly luciferase transcription actually increases in response to exogenous sucrose rather than decreasing as in the wild type. Interestingly, plastid-derived redox signals do not influence this defective pattern of sugar-regulated gene expression in the sun6 mutant. A model, which invokes a positive inducer originating from the photosynthetic electron transport chain, is proposed to explain the nature of the plastid-derived signal

    Mount Pinatubo, Inflammatory Cytokines, and the Immunological Ecology of Aeta Hunter-Gatherers

    Get PDF
    Early growth cessation and reproduction are predicted to maximize fitness under conditions of high adult mortality, factors that could explain the pygmy phenotype of many rainforest hunter-gatherers. This life-history hypothesis is elegant but contentious in part because it lacks a clear biological mechanism. One mechanism stems from the field of human immunological ecology and the concept of inflammation memory across the life cycle and into subsequent generations. Maternal exposures to disease can infl uence immunological cues present in breast milk; because maternal provisioning via lactation occurs during critical periods of development, it is plausible that these cues can also mediate early growth cessation and small body size. Such epigenetic hypotheses are difficult to test, but the concept of developmental programming is attractive because it could explain how the stature of a population can change over time, in terms of both secular increases and rapid intergenerational decreases. Here we explore this concept by focusing on the Aeta, a population of former hunter-gatherers, and the Ilocano, a population of rice farmers. We predicted that Aeta mothers would produce breast milk with higher concentrations of four bioactive factors due to high infectious burdens. Further, we predicted that the concentrations of these factors would be highest in the cohort of women born in the early 1990s, when exposure to infectious disease was acute following the eruption of Mount Pinatubo in June 1991. We analyzed levels of adiponectin, C-reactive protein, and epidermal growth factor in the milk of 24 Aeta and 31 Ilocano women and found no detectable differences, whereas levels of transforming growth factor-β2 were elevated among the Aeta, particularly as a function of maternal age. We found no difference between cohorts divided by the volcanic eruption (n = 43 born before, n = 12 born after). We discuss the implications of our findings for the terminal investment hypothesis and we suggest that the historical ecology of the Aeta is a promising model system for testing epigenetic hypotheses focused on the evolution of small body size

    Reindeer and the quest for Scottish enlichenment

    Get PDF
    Funding Information: The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: Data were collected with funding from the Goodman Fund, Dartmouth College and the Global Fellowship Scheme, University of St Andrews.In the hall of animal oddities, the reindeer (Rangifer tarandus) is the only mammal with a color-shifting tapetum lucidum and the only ruminant with a lichen-dominated diet. These puzzling traits coexist with yet another enigma––ocular media that transmit up to 60% of ultraviolet (UV) light, enough to excite the cones responsible for color vision. It is unclear why any day-active circum-Arctic mammal would benefit from UV visual sensitivity, but it could improve detection of UV-absorbing lichens against a background of UV-reflecting snows, especially during the extended twilight hours of winter. To explore this idea and advance our understanding of reindeer visual ecology, we recorded the reflectance spectra of several ground-growing (terricolous), shrubby (fruticose) lichens in the diets of reindeer living in Cairngorms National Park, Scotland.Publisher PDFPeer reviewe

    Collapse of an ecological network in Ancient Egypt

    Get PDF
    The dynamics of ecosystem collapse are fundamental to determining how and why biological communities change through time, as well as the potential effects of extinctions on ecosystems. Here we integrate depictions of mammals from Egyptian antiquity with direct lines of paleontological and archeological evidence to infer local extinctions and community dynamics over a 6000-year span. The unprecedented temporal resolution of this data set enables examination of how the tandem effects of human population growth and climate change can disrupt mammalian communities. We show that the extinctions of mammals in Egypt were nonrandom, and that destabilizing changes in community composition coincided with abrupt aridification events and the attendant collapses of some complex societies. We also show that the roles of species in a community can change over time, and that persistence is predicted by measures of species sensitivity, a function of local dynamic stability. Our study is the first high-resolution analysis of the ecological impacts of environmental change on predator-prey networks over millennial timescales, and sheds light on the historical events that have shaped modern animal communities

    Tree Climbing and Human Evolution

    Get PDF
    Paleoanthropologists have long argued—often contentiously—about the climbing abilities of early hominins and whether a foot adapted to terrestrial bipedalism constrained regular access to trees. However, some modern humans climb tall trees routinely in pursuit of honey, fruit, and game, often without the aid of tools or support systems. Mortality and morbidity associated with facultative arboreality is expected to favor behaviors and anatomies that facilitate safe and efficient climbing. Here we show that Twa hunter–gatherers use extraordinary ankle dorsiflexion (\u3e45°) during climbing, similar to the degree observed in wild chimpanzees. Although we did not detect a skeletal signature of dorsiflexion in museum specimens of climbing hunter–gatherers from the Ituri forest, we did find that climbing by the Twa is associated with longer fibers in the gastrocnemius muscle relative to those of neighboring, nonclimbing agriculturalists. This result suggests that a more excursive calf muscle facilitates climbing with a bipedally adapted ankle and foot by positioning the climber closer to the tree, and it might be among the mechanisms that allow hunter–gatherers to access the canopy safely. Given that we did not find a skeletal correlate for this observed behavior, our results imply that derived aspects of the hominin ankle associated with bipedalism remain compatible with vertical climbing and arboreal resource acquisition. Our findings challenge the persistent arboreal–terrestrial dichotomy that has informed behavioral reconstructions of fossil hominins and highlight the value of using modern humans as models for inferring the limits of hominin arboreality

    Alcohol Discrimination and Preferences in Two Species of Nectar-Feeding Primate

    Get PDF
    Recent reports suggest that dietary ethanol, or alcohol, is a supplemental source of calories for some primates. For example, slow lorises (Nycticebus coucang) consume fermented nectars with a mean alcohol concentration of 0.6% (range: 0.0–3.8%). A similar behaviour is hypothesized for aye-ayes (Daubentonia madagascariensis) based on a single point mutation (A294V) in the gene that encodes alcohol dehydrogenase class IV (ADH4), the first enzyme to catabolize alcohol during digestion. The mutation increases catalytic efficiency 40-fold and may confer a selective advantage to aye-ayes that consume the nectar of Ravenala madagascariensis. It is uncertain, however, whether alcohol exists in this nectar or whether alcohol is preferred or merely tolerated by nectarivorous primates. Here, we report the results of a multiple-choice food preference experiment with two aye-ayes and a slow loris. We conducted observer-blind trials with randomized, serial dilutions of ethanol (0–5%) in a standard array of nectar- simulating sucrose solutions. We found that both species can discriminate varying concentrations of alcohol; and further, that both species prefer the highest available concentrations. These results bolster the hypothesized adaptive function of the A294V mutation in ADH4, and a connection with fermented foods, both in aye-ayes and the last common ancestor of African apes and humans
    • …
    corecore