3,403 research outputs found

    Single layer centrifugation (SLC) for bacterial removal with Porcicoll positively modifies chromatin structure in boar spermatozoa

    Get PDF
    The storage of boar semen samples at 17 degrees C for artificial insemination (AI) doses enables the proliferation of the bacteria, making antibiotics necessary. This can contribute to the development of antimicrobial resistance (AMR). This study tested bacterial presence and sperm chromatin structure after using a low-density colloid (Porcicoll) as an antibiotic alternative to eliminate bacteria. Ejaculates (8 boars, 3 ejac-ulates each) were split as control and low-density colloid centrifugation (single layer centrifugation, SLC, 20%, and 30% Porcicoll) into 500 ml tubes. Analyses were carried out at days 0, 3, and 7 (17 degrees C) for microbial presence and sperm chromatin structure analysis: %DFI (DNA fragmentation) and %HDS (chromatin immaturity), monobromobimane (mBBr; free thiols and disulfide bridges), and chromomycin A3 (CMA3; chromatin compaction). Besides comparing bacterial presence (7 species identified) and chromatin variables between treatments, the associations between these sets of variables were described by canonical correlation analysis (CCA). Results showed a significant decrease of some bacteria or a complete removal after SLC (especially for P30). SLC also caused a decrease of %HDS and an increase of disulfide bridges and low and medium mBBr populations, suggesting the removal of immature sperm (poor chromatin compaction). CCA showed an association pattern compatible with the degradation of sperm chromatin parameters with bacterial contamination, especially Enterobacteria, P. aeuriginosa, and K. variicola. In conclusion, bacterial contamination affects sperm chromatin beyond DNA fragmentation; SLC with low-density colloid not only removes bacteria from boar semen, but also chromatin structure is enhanced after selection.(c) 2023 Published by Elsevier Inc

    Graphene and graphene oxide induce ROS production in human HaCaT skin keratinocytes: The role of xanthine oxidase and NADH dehydrogenase

    Get PDF
    The extraordinary physicochemical properties of graphene-based nanomaterials (GBNs) make them promising tools in nanotechnology and biomedicine. Considering the skin contact as one of the most feasible exposure routes to GBNs, the mechanism of toxicity of two GBNs (few-layer-graphene, FLG, and graphene oxide, GO) towards human HaCaT skin keratinocytes was investigated. Both materials induced a significant mitochondrial membrane depolarization: 72 h cell exposure to 100 \u3bcg mL 12 1 FLG or GO increased mitochondrial depolarization by 44% and 56%, respectively, while the positive control valinomycin (0.1 \u3bcg mL 121) increased mitochondrial depolarization by 48%. Since the effect was not prevented by cyclosporine-A, it appears to be unrelated to mitochondrial transition pore opening. By contrast, it seems to be mediated by reactive oxygen species (ROS) production: FLG and GO induced time- and concentration- dependent cellular ROS production, significant already at the concentration of 0.4 \u3bcg mL 121 after 24 h exposure. Among a panel of specific inhibitors of the major ROS-producing enzymes, diphenyliodonium, rotenone and allopurinol significantly reverted or even abolished FLG- or GO-induced ROS production. Intriguingly, the same inhibitors also significantly reduced FLG- or GO-induced mitochondrial depolarization and cytotoxicity. This study shows that FLG and GO induce a cytotoxic effect due to a sustained mitochondrial depolarization. This seems to be mediated by a significant cellular ROS production, caused by the activation of flavoprotein-based oxidative enzymes, such as NADH dehydrogenase and xanthine oxidase

    The role of xanthine oxidase and NADH dehydrogenase.

    Get PDF
    The extraordinary physicochemical properties of graphene-based nanomaterials (GBNs) make them promising tools in nanotechnology and biomedicine. Considering the skin contact as one of the most feasible exposure routes to GBNs, the mechanism of toxicity of two GBNs (few-layer-graphene, FLG, and graphene oxide, GO) towards human HaCaT skin keratinocytes was investigated. Both materials induced a significant mitochondrial membrane depolarization: 72 h cell exposure to 100 µg mL-1 FLG or GO increased mitochondrial depolarization by 44% and 56%, respectively, while the positive control valinomycin (0.1 µg mL-1) increased mitochondrial depolarization by 48%. Since the effect was not prevented by cyclosporine-A, it appears to be unrelated to mitochondrial transition pore opening. By contrast, it seems to be mediated by reactive oxygen species (ROS) production: FLG and GO induced time- and concentration-dependent cellular ROS production, significant already at the concentration of 0.4 µg mL-1 after 24 h exposure. Among a panel of specific inhibitors of the major ROS-producing enzymes, diphenyliodonium, rotenone and allopurinol significantly reverted or even abolished FLG- or GO-induced ROS production. Intriguingly, the same inhibitors also significantly reduced FLG- or GO-induced mitochondrial depolarization and cytotoxicity. This study shows that FLG and GO induce a cytotoxic effect due to a sustained mitochondrial depolarization. This seems to be mediated by a significant cellular ROS production, caused by the activation of flavoprotein-based oxidative enzymes, such as NADH dehydrogenase and xanthine oxidase

    LXR Nuclear receptors are transcriptional regulators of dendritic cell chemotaxis

    Full text link
    The liver X receptors (LXRs) are ligand-activated nuclear receptors with established roles in the maintenance of lipid homeostasis in multiple tissues. LXRs exert additional biological functions as negative regulators of inflammation, particularly in macrophages. However, the transcriptional responses controlled by LXRs in other myeloid cells, such as dendritic cells (DCs), are still poorly understood. Here we used gain- and loss-of-function models to characterize the impact of LXR deficiency on DC activation programs. Our results identified an LXR-dependent pathway that is important for DC chemotaxis. LXR-deficient mature DCs are defective in stimulus-induced migration in vitro and in vivo. Mechanistically, we show that LXRs facilitate DC chemotactic signaling by regulating the expression of CD38, an ectoenzyme important for leukocyte trafficking. Pharmacological or genetic inactivation of CD38 activity abolished the LXR-dependent induction of DC chemotaxis. Using the low-density lipoprotein receptor-deficient (LDLR−/−) LDLR−/− mouse model of atherosclerosis, we also demonstrated that hematopoietic CD38 expression is important for the accumulation of lipid-laden myeloid cells in lesions, suggesting that CD38 is a key factor in leukocyte migration during atherogenesis. Collectively, our results demonstrate that LXRs are required for the efficient emigration of DCs in response to chemotactic signals during inflammation

    Mortandad de caprinos por posible intoxicación con insectos escarabajos “siete de oro”, en la Localidad de Copacabana, departamento Tinogasta, Catamarca.

    Get PDF
    El caso de mortalidad en caprinos ocurrido a fines de febrero del 2023, estuvo circunscripto a un productor de la localidad de Copacabana, dpto. Tinogasta, provincia de Catamarca. Ante la problemática el productor realizó la consulta en la Agencia de Extensión de INTA ubicada en el departamento; generando interconsultas con las Áreas de Producción Animal y Vegetal de la institución y con la finalidad de abordar la problemática.EEA CatamarcaFil: Cortez, Patricia Alejandra. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Catamarca. Agencia de Extensión Rural Tinogasta; ArgentinaFil: Castro, Ornella Eugenia. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Catamarca. Campo Anexo Santa Cruz; ArgentinaFil: Ojeda Fermoselle, Pablo Matias. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Catamarca. Campo Anexo Santa Cruz; ArgentinaFil: Aybar, Sonia Elizabeth. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Catamarca; ArgentinaFil: Gonzalez, Maria Florencia. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Catamarca. Campo Anexo Santa Cruz; ArgentinaFil: Almaraz, Sabrina Cristina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Catamarca. Campo Anexo Santa Cruz; ArgentinaFil: Herrera, Victor Gaspar. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Catamarca. Campo Anexo Santa Cruz; ArgentinaFil: Dominguez, Pablo Martín. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Catamarca. Campo Anexo Santa Cruz; ArgentinaFil: Herrera Conegliano, Oscar Ariel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Catamarca; Argentin

    Growth Differentiation Factor 15 is a potential biomarker of therapeutic response for TK2 deficient myopathy

    Get PDF
    GDF-15 is a biomarker for mitochondrial diseases. We investigated the application of GDF-15 as biomarker of disease severity and response to deoxynucleoside treatment in patients with thymidine kinase 2 (TK2) deficiency and compared it to FGF-21. GDF-15 and FGF-21 were measured in serum from 24 patients with TK2 deficiency treated 1–49 months with oral deoxynucleosides. Patients were grouped according to age at treatment and biomarkers were analyzed at baseline and various time points after treatment initiation. GDF-15 was elevated on average 30-fold in children and 6-fold in adults before the start of treatment. There was a significant correlation between basal GDF-15 and severity based on pretreatment distance walked (6MWT) and weight (BMI). During treatment, GDF-15 significantly declined, and the decrease was accompanied by relevant clinical improvements. The decline was greater in the paediatric group, which included the most severe patients and showed the greatest clinical benefit, than in the adult patients. The decline of FGF-21 was less prominent and consistent. GDF-15 is a potential biomarker of severity and of therapeutic response for patients with TK2 deficiency. In addition, we show evidence of clinical benefit of deoxynucleoside treatment, especially when treatment is initiated at an early age

    Growth Differentiation Factor 15 is a potential biomarker of therapeutic response for TK2 deficient myopathy

    Get PDF
    GDF-15 is a biomarker for mitochondrial diseases. We investigated the application of GDF-15 as biomarker of disease severity and response to deoxynucleoside treatment in patients with thymidine kinase 2 (TK2) deficiency and compared it to FGF-21. GDF-15 and FGF-21 were measured in serum from 24 patients with TK2 deficiency treated 1-49 months with oral deoxynucleosides. Patients were grouped according to age at treatment and biomarkers were analyzed at baseline and various time points after treatment initiation. GDF-15 was elevated on average 30-fold in children and 6-fold in adults before the start of treatment. There was a significant correlation between basal GDF-15 and severity based on pretreatment distance walked (6MWT) and weight (BMI). During treatment, GDF-15 significantly declined, and the decrease was accompanied by relevant clinical improvements. The decline was greater in the paediatric group, which included the most severe patients and showed the greatest clinical benefit, than in the adult patients. The decline of FGF-21 was less prominent and consistent. GDF-15 is a potential biomarker of severity and of therapeutic response for patients with TK2 deficiency. In addition, we show evidence of clinical benefit of deoxynucleoside treatment, especially when treatment is initiated at an early age

    Prognostic significance of FLT3-ITD length in AML patients treated with intensive regimens

    Get PDF
    FLT3-ITD mutations are detected in approximately 25% of newly diagnosed adult acute myeloid leukemia (AML) patients and confer an adverse prognosis. The FLT3-ITD allelic ratio has clear prognostic value. Nevertheless, there are numerous manuscripts with contradictory results regarding the prognostic relevance of the length and insertion site (IS) of the FLT3-ITD fragment. We aimed to assess the prognostic impact of these variables on the complete remission (CR) rates, overall survival (OS) and relapse-free survival (RFS) of AML patients with FLT3-ITDmutations. We studied the FLT3-ITD length of 362 adult AML patients included in the PETHEMA AML registry. We tried to validate the thresholds of ITD length previously published (i.e., 39 bp and 70 bp) in intensively treated AML patients (n = 161). We also analyzed the mutational profile of 118 FLT3-ITD AML patients with an NGS panel of 39 genes and correlated mutational status with the length and IS of ITD. The AUC of the ROC curve of the ITD length for OS prediction was 0.504, and no differences were found when applying any of the thresholds for OS, RFS or CR rate. Only four out of 106 patients had ITD IS in the TKD1 domain. Our results, alongside previous publications, confirm that FLT3-ITD length lacks prognostic value and clinical applicability. © 2021, The Author(s)

    Extreme Phenotypes With Identical Mutations: Two Patients With Same Non-sense NHEJ1 Homozygous Mutation

    Get PDF
    Cernunnos/XLF deficiency is a rare primary immunodeficiency classified within the DNA repair defects. Patients present with severe growth retardation, microcephaly, lymphopenia and increased cellular sensitivity to ionizing radiation. Here, we describe two unrelated cases with the same non-sense mutation in the NHEJ1 gene showing significant differences in clinical presentation and immunological profile but a similar DNA repair defect

    Nutrients

    Get PDF
    The gut microbiome is involved in nutrient metabolism and produces metabolites that, via the gut-brain axis, signal to the brain and influence cognition. Human studies have so far had limited success in identifying early metabolic alterations linked to cognitive aging, likely due to limitations in metabolite coverage or follow-ups. Older persons from the Three-City population-based cohort who had not been diagnosed with dementia at the time of blood sampling were included, and repeated measures of cognition over 12 subsequent years were collected. Using a targeted metabolomics platform, we identified 72 circulating gut-derived metabolites in a case-control study on cognitive decline, nested within the cohort (discovery n = 418; validation n = 420). Higher serum levels of propionic acid, a short-chain fatty acid, were associated with increased odds of cognitive decline (OR for 1 SD = 1.40 (95% CI 1.11, 1.75) for discovery and 1.26 (1.02, 1.55) for validation). Additional analyses suggested mediation by hypercholesterolemia and diabetes. Propionic acid strongly correlated with blood glucose (r = 0.79) and with intakes of meat and cheese (r > 0.15), but not fiber (r = 0.04), suggesting a minor role of prebiotic foods per se, but a possible link to processed foods, in which propionic acid is a common preservative. The adverse impact of propionic acid on metabolism and cognition deserves further investigation.COGINUT : Cognition, anti-oxydants, acides gras: approche interdisciplinaire du rôle de la nutrition dans le vieillissement du cerveauHistoire naturelle du déclin cognitif et du besoin de soins chez le sujet âg
    corecore