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Prognostic significance of FLT3‑ITD 
length in AML patients treated 
with intensive regimens
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Josefina Serrano18, Erik De Cabo19, María J. Sayas20, María T. Olave21, 
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FLT3-ITD mutations are detected in approximately 25% of newly diagnosed adult acute myeloid 
leukemia (AML) patients and confer an adverse prognosis. The FLT3-ITD allelic ratio has clear 
prognostic value. Nevertheless, there are numerous manuscripts with contradictory results regarding 
the prognostic relevance of the length and insertion site (IS) of the FLT3-ITD fragment. We aimed to 
assess the prognostic impact of these variables on the complete remission (CR) rates, overall survival 
(OS) and relapse-free survival (RFS) of AML patients with FLT3-ITDmutations. We studied the FLT3-
ITD length of 362 adult AML patients included in the PETHEMA AML registry. We tried to validate 
the thresholds of ITD length previously published (i.e., 39 bp and 70 bp) in intensively treated AML 
patients (n = 161). We also analyzed the mutational profile of 118 FLT3-ITD AML patients with an NGS 
panel of 39 genes and correlated mutational status with the length and IS of ITD. The AUC of the ROC 
curve of the ITD length for OS prediction was 0.504, and no differences were found when applying any 
of the thresholds for OS, RFS or CR rate. Only four out of 106 patients had ITD IS in the TKD1 domain. 
Our results, alongside previous publications, confirm that FLT3-ITD length lacks prognostic value and 
clinical applicability.
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Acute myeloid leukemia (AML) is the most common form of acute leukemia in adults. The clinical behavior and 
genetic characteristics of the disease are heterogeneous1. In the last 25 years, advances in molecular techniques 
have allowed a greater understanding of the pathogenesis of AML and the subsequent development of targeted 
therapies and a more refined prognostic classification based on the genetic features of the disease2,3.

FMS-like tyrosine kinase-3 internal tandem duplication (FLT3-ITD) is one of the most frequent mutations 
found in AML patients. Mutations of FLT3 are found in approximately 30% of newly diagnosed AML patients 
and appear either as ITDs (≈ 25%) or point mutations in the tyrosine kinase domain (TKD) (7–10%)4. FLT3-ITD 
mutations occur in the form of a replicated sequence in the juxtamembrane domain (JMD) and/or TKD1 of the 
FLT3 gene. FLT3-ITD is located within exon 14, corresponding to JMD, in 70% of AML patients, while 30% of 
ITDs span exon 15, corresponding to the TKD1 domain. FLT3-ITDs show great variation in size (ranging from 
3 to more than 400 base pairs (bp)), insertion sites (ISs), allelic ratios (ARs) and the number of clones5.

AML patients with FLT3-ITD mutations show an increased relapse rate, reduced disease-free survival (DFS), 
and decreased long-term survival, while the rate of complete remission (CR) after induction chemotherapy is not 
significantly affected6,7. FLT3-ITD mutational load, expressed as an AR determined by fragment length analysis, 
has a clear prognostic value and is, therefore, included in the genetic prognostic classification of the European 
Leukemia Net (ELN) published in 20178. Nevertheless, there are numerous and contradictory manuscripts 
regarding the prognostic importance of the length and insertion site of the ITD fragment. Some studies showed 
a reduced CR rate, while others analyzing the IS in the same region found differences in OS. Additionally, differ-
ent subdomains have been highlighted, such as those conferring an adverse outcome9,10. Regarding ITD length, 
some authors have found that patients with shorter ITD lengths have more favorable outcomes11,12 or worse 
prognoses13, while other researchers did not find a prognostic relationship14. None of the studies has carried out 
an internal ITD length cutoff validation by dividing the patients into a training cohort and a validation cohort, 
which, given the arbitrary selection of the cutoffs used, would be necessary. Nevertheless, some thresholds have 
been applied in more than one study [i.e., 39 bp and 70 bp]11,15–17. We aimed to shed light on the prognostic 
importance of the FLT3-ITD length and site of insertion by validating previously suggested sites of insertion 
and thresholds of ITD length. Moreover, we performed an analysis of the correlation of FLT3-ITD length and 
insertion sites with the mutational landscape of AML, which has not been carried out thus far.

Results
Patient characteristics and treatment.  Intensive chemotherapy regimens were administered to 161 
patients (idarubicin + cytarabine; 3 + 7, n = 151 and 2 + 5, n = 8; IDA-FLAG (fludarabine + Ara-C + idarubicin), 
n = 1 and FLAG, n = 1). The median age of this group was 55.1  years (range 17.1–85.3  years); 76 males and 
85 females. The non-intensive chemotherapy group received FLUGA (fludarabine + Ara-C), n = 22; azacytidine, 
n = 15; and decitabine, n = 5, and one patient was treated with IDA-FLAG-Lite. Regardless of the regimen inten-
sity, all clinical trial participants were grouped in a separate treatment category (n = 15). The BSC group included 
7 patients receiving transfusions and other supportive measures. As consolidation therapy, one hundred 
patients received high-intensity treatment (3 + 7, n = 68; 3 + 7 + gemtuzumab ozogamicin (GO), n = 4; 2 + 5 = 2; 
IDA-FLAG, n = 1; high-dose cytarabine (HDARAC), n = 23; low-dose cytarabine (LDARAC), n = 1; and Ara-C 
100 mg/m2 × 5, n = 1). Seventeen patients underwent autologous hematopoietic progenitor transplantation, and 
forty-four patients underwent allogeneic hematopoietic progenitor transplantation (Table 1).

Impact of the FLT3‑ITD allelic ratio.  The FLT3-ITD AR was available in 140 intensively treated patients. 
We used the 0.5 cutoff of the AR as recommended by the 2017 ELN guidelines8.These patients were divided 
on the basis of the FLT3-ITD AR into an FLT3-ITDLOWgroup (41%; n = 58) and an FLT3-ITDHIGHgroup (59%; 
n = 82). In the FLT3-ITDLOW group of patients, the median OS was 2.3 years (CI: 1.1–3.6), and in the FLT3-
ITDHIGH group of patients, the median OS was 1.1 years (CI: 0.7–1.5). When comparing both subgroups using a 
log-rank test, there was a clear trend toward a reduced OS in FLT3-ITDHIGH patients (P = 0.052).

Length of FLT3‑ITD mutations.  The length of the 362 ITDs ranged from 3 to 201 bp, with a median ITD 
length of 48 bp.The distribution of ITD length can be observed in Supplementary Fig. S1. In those patients with 
more than one ITD mutation, only the longest mutation was selected for statistical analysis (10 patients had > 1 
ITD mutation). The area under the ROC curve (AUC) for OS prediction was 0.504. We also performed an ROC 
curve analysis for OS prediction excluding those 10 patients with more than 1 ITD insertion and obtained an 
AUC of 0.521. As we have already explained, our main goal was to validate two previous recurrently applied 
cutoffs: 39 bp and 70 bp. Nevertheless, we also performed an analysis with the median ITD length of our cohort 
(48 bp). The analysis of OS and RFS applying this value did not show significant results (data not shown).

Impact of FLT3‑ITD size using the 39 bp cutoff.  First, 161 AML patients with FLT3-ITD mutations treated with 
IC were analyzed using 39 bp as the cutoff (< 39 bp; n = 48, ≥ 39 bp; n = 113). The median OS was 1.3 years (CI: 
0.7–1.9) and 1.4 years (CI: 0.9–1.9), respectively (P = 0.9). The median RFS was 1.2 years (CI: 0–2.4) and 0.9 years 
(CI: 0.6–17.1), respectively (P = 0.3). CR or CRi was achieved in 70% of the patients in both groups (P = 0.9). An 
analysis of OS censoring at the time of allo-HSCT did not yield significant results (data not shown).A stratified 
analysis of FLT3-ITD length on the basis of the AR was performed in 140 patients (AR < 0.5 and ITD < 39 bp, 
n = 17; AR < 0.5 and ITD ≥ 39 bp, n = 41; AR > 0.5 and ITD < 39 bp, n = 23; AR > 0.5 and ITD ≥ 39 bp, n = 59). The 
median OS was 1.0 years [CI not calculable (NC)], 2.3 years (CI: 1.2–3.5), 1.6 years (CI: 0.6–2.6) and 1.0 years 
(CI: 0.8–1.2), respectively (P = 0.9). Similarly, a stratified analysis of FLT3-ITD length on the basis of 2010 ELN 
genetic risk was performed in 123 patients (intermediate-I group, ITD < 39 bp, n = 31 and ITD ≥ 39 bp, n = 68; 
intermediate-II group, ITD < 39  bp, n = 5 and ITD ≥ 39  bp, n = 10; and adverse group, ITD < 39  bp, n = 2 and 
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ITD ≥ 39 bp, n = 7). The median OS was 2.4 years (CI 0–5.5), 1.7 years (CI: 0–4.4), 1.3 years (CI 0.6–2.0), 1.5 years 
(CI: 0.2–2.7), 0.9 years (CI NC) and 2.3 years (CI: 0–4.8), respectively. No statistically significant differences were 
found (P = 0.8) (Fig. 1).

Impact of FLT3‑ITD size using the 70 bp cutoff.  Prognostic analyses were performed using the 70 bp cutoff 
in 161 AML patients with FLT3-ITD mutations treated with IC (< 70 bp; n = 119, ≥ 70 bp; n = 42). The median 
OS was 1.3 years (CI 0.7–1.9) and 1.4 years (CI 1.0–1.8), respectively (P = 0.8). The median RFS was 1.2 years 
(CI 0.2–2.2) and 0.77 years (CI 0.5–1.1), respectively (P = 0.06). CR or CRi was achieved in 70% of the patients 
in both groups (P = 0.9). An analysis of OS censoring at the time of allo-HSCT did not yield significant results 
(data not shown). A stratified analysis of FLT3-ITD length on the basis of the AR was performed in 140 patients 
(AR < 0.5 and ITD < 70 bp, n = 43; AR < 0.5 and ITD ≥ 70 bp, n = 15; AR > 0.5 and ITD < 70 bp, n = 61; AR > 0.5 and 
ITD ≥ 70 bp, n = 21). The median OS was 2.3 years (CI: 1.0–3.6), 1.4 years (CI: 1.0–1.8), 1.1 years (CI: 0.8–1.3) 

Table 1.   Baseline characteristics of FLT3-ITD AML patients treated with intensive chemotherapy regimens. 
FAB French American-British, ELN European leukemia net.

Patient characteristics Total N = 161 ITD lentgh < 39 bp N = 48 ITD lentgh ≥ 39 bp N = 113 ITD lentgh < 70 bp N = 119 ITD lentgh ≥ 70 bp N = 42

Median age at diagnosis, years 55.1 55.7 52.4 55.1 52.3

Range 17–85 17–85 17–74 17–85 20–74

Median follow-up, years 0.8 0.8 0.8 0.8 0.9

Range 0–12.5 0–10.2 0–12.5 0–12.5 0–6.4

Sex

Female 85 (52.8) 23 (47.9) 62 (54.9) 60 (50.4) 25 (59.5)

Male 76 (47.2) 25 (52.1) 51 (45.1) 59 (49.6) 17 (40.5)

Median ITD allelic ratio (AR) 0.6 0.6 0.6 0.6 0.6

ITD allelic ratio ELN 2017

AR < 0.5 58 (36.0) 17 (35.4) 41 (36.3) 43 (36.1) 15 (35,7)

AR ≥ 0.5 82 (51.9) 23 (47.9) 59 (52.2) 61 (51.2) 21 (50,0)

FAB subtypes

M0 5 (3.1) 1 (2.1) 4 (3.5) 3 (2.5) 2 (4.7)

M1 36 (22.4) 11 (22.9) 25 (22.1) 26 (21.8) 10 (23.8)

M2 12 (7.5) 5 (10.4) 7 (6.2) 10 (8.4) 2 (4.8)

M4 22 (13.7) 10 (20.8) 12 (10.6) 16 (13.4) 6 (14.3)

M5 33 (20.5) 8 (16.6) 25 (22.1) 27 (22.7) 6 (14.3)

M6 1 (0.6) 1 (2.1) ─ 1 (0.8) ─

M7 1 (0.6) ─ 1 (0.6) 1 (0.8) ─

Unclassified 6 (3.7) ─ 6 (5.3) 4 (3.4) 2 (4.8)

Cytogenetic risk (ELN 2010)

Favorable risk ─ ─ ─ ─ ─

Intermediate-I risk 99 (61.4) 31 (64.6) 68 (60.1) 75 (63.0) 24 (57.1)

Intermediate-II risk 15 (9.3) 5 (10,4) 10 (8.8) 14 (11.8) 1 (2.4)

Adverse risk 9 (5.6) 2 (4,1) 7 (6.2) 6 (5.0) 3 (7.1)

Median leucocytes at diagnosis, 109/L 50.7 49.6 54.0 50.7 55.5

Range 0.6–434 0.8–434.3 0.6–371.8 0.6–434.3 0.8–365.5

Median hemoglobin at diagnosis, g/dl 8.9 8.9 8.8 8.9 8.7

Range 4–15.6 4–14.7 4–15.6 4–14.7 6.4–15.6

Median platelets at diagnosis, 109/L 48 47 47 48 46.5

Range 9–330 17–330 9–246 9–330 10.7–217

Induction therapy

Idarubicin + Cytarabine (3 + 7) 150 (92.5) 42 (85.4) 108 (95.5) 110 (91.6) 40 (95.2)

Idarubicin + Cytarabine (2 + 5) 8 (5.0) 4 (8.3) 4 (3.5) 6 (5.0) 2 (4.8)

Daunorubicin + Cytarabine (3 + 7) 1 (0.6) 1 (2.1) ─ 1 (0.8) ─

IDA-FLAG 1 (0.6) ─ 1 (0.9) 1 (0.8) ─

FLAG 1 (0.6) 1 (2.1) ─ 1 (0.8) ─

Stem cell transplant

Allogeneic hematopoietic cell transplanta-
tion 44 (27.3) 15 (31.3) 29 (25.6) 33 (27.7) 11 (26.2)

Autologous hematopoietic cell transplanta-
tion 17 (10.6) 4 (8.3) 13 (11.5) 12 (10.1) 5 (11.9)
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and 1.0 years (CI: 0.3–1.8), respectively (P = 0.9). A stratified analysis of FLT3-ITD length by 2010 ELN genetic 
risk was performed in 123 patients (intermediate-I group, ITD < 70 bp, n = 75 and ITD ≥ 70 bp, n = 24; interme-
diate-II group, ITD < 70 bp, n = 14 and ITD ≥ 70 bp, n = 1; and adverse group, ITD < 70 bp, n = 6 and ITD ≥ 70 bp, 
n = 3). The median OS was 1.7 years (CI 0–4.0), 1.7 years (CI NC), 1.3 years (CI 0.3–2.3), 1.5 years (CI NC), 
1.2 years (CI: 0.5–2.0) and 2.4 years (CI NC), respectively. No statistically significant differences were found 
(P = 0.4) (Fig. 2).

There were two patients with core binding factor (CBF) translocations (one RUNX-RUNX1T1 and one CBFB-
MYH11) and FLT3-ITD mutations. CBF translocations have been associated with FLT3-ITD mutations in very 
few patients, and there is no clear information regarding their ELN prognostication18–20. Therefore, these patients 
were not included in the analysis stratified by 2010 ELN genetic risk21.

Insertion site of the FLT3‑ITD mutations.  The insertion site was analyzed in 106 AML patients with 
the FLT3-ITD mutation. Regrettably, patients with information on the IS of ITD available had received differ-
ent treatments: intensive chemotherapy, n = 37; non-intensive therapy, n = 14; clinical trials, n = 6; and best sup-
portive care, n = 2. We have no information on the treatment received by the remaining patients. Ninety-eight 
patients had ITD insertion sites in the JMD domain (JM-B, n = 6; JM-S, n = 42; JM-Z, n = 43; and hinge region 
(HR), n = 7), four patients had ITD insertion sites in the TKD1 domain (beta1-sheet, n = 1; beta2-sheet, n = 1; 
and nucleotide binding loop (NBL), n = 2) and four patients had ITD insertion sites in the extracellular domain 
(ED) (Fig. 3). Therefore, only 3.8% of the patients showed an FLT3-ITD insertion in the TKD1 domain. Given 
the heterogeneity of treatments received and the scarce number of ISs in TKD1, we did not perform statistical 
analysis.

Correlation between FLT3‑ITD length or insertion site and other gene variants by NGS.  The 
median length of the ITD in four patients with SF3B1 mutations was 15 bp vs 48 bp in patients without SF3B1 
mutations (n = 64) (P = 0.012). Similarly, the median ITD length in three patients with EZH2  mutations was 
26 bp vs 48 bp in the wild-type group (n = 65) (P = 0.031). Furthermore, ten patients with mutated WT1 showed 

Figure 1.   Clinical outcome stratified according to the FLT3-ITD length (cutoff 39 bp) for all patients treated 
with intensive chemotherapy. (A) Overall survival. (B) Relapse-free survival. (C) OS according to the FLT3-ITD 
length and allelic ratio. (D) OS according to the FLT3-ITD length and 2010 ELN genetic risk. AR,allelic ratio.
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a median ITD length of 77 bp, and 58 patients with non-mutated WT1 showed a median ITD length of 42 bp 
(P = 0.021). Mutations of SF3B1, EZH2 and WT1 seem to be a more ancestral event than FLT3 mutations, as 
expected, given the VAF of the genes. Nevertheless, in three patients, similar VAFs (< 5% difference) were 
detected, which might indicate that these mutations occurred at the same timepoint as the FLT3 mutation.No 
significant differences were found between the ITD length and the mutational status of any of the remaining 
genes (Fig. 4).

All four patients with ITD insertions in TKD1 had mutations in DNTM3A, compared with 39 out of 96 
patients (41%) with ITD insertions in the JMD domain (P = 0.031). Statistically significant results were not 
observed for any other gene in this analysis.

Discussion
This study shows that the size of FLT3-ITD mutations has no prognostic impact in terms of survival, relapse or 
CR rate among newly diagnosed AML patients treated with first-line intensive regimens. Our real-life cohort was 
composed of 362 patients, most of whom were not included in clinical trials. As in previous works, we analyzed 
the clinical significance of FLT3-ITD length among fit patients treated with intensive regimens15,16. Our median 
ITD length was 48 bp (range = 3 bp to 231 bp), similar to previous studies12,14,17. To test the prognostic signifi-
cance of the ITD length and its clinical applicability, we used recurrent previously published cutoffs, which were 
analyzed in series ranging from 28 to 100 intensively treated patients. Patients with an ITD fragment ≥ 39 bp 
or ≥ 70 bp had a significant reduction in OS and RFS in some of these studies, but we were unable to validate 
these findings11,15–17. We obtained a P value of 0.055 in the analysis of RFS applying the 70 bp cutoff. Of note, 
we tested 3 different ITD length thresholds, and to be considered significant, the P value should be < 0.025. 
Therefore, the value obtained is not significant, although it shows a slight trend toward being significant. The 
size of our cohort was larger than those of the studies published using these cutoffs. Larger studies of ITD size, 
although they did not employ these cutoffs, did not find prognostic power of this measure, which corroborates 
our results. Additionally, the area under the ROC curve, which serves as an indicator of the diagnostic capacity 
of the ITD length as a whole, was 0.504. This value highlights the scarce prognostic value of the measure. On 

Figure 2.   Clinical outcome stratified according to the FLT3-ITD length (cutoff 70 bp) for all patients treated 
with intensive chemotherapy. (A) Overall survival. (B) Relapse-free survival. (C) OS according to the FLT3-ITD 
length and allelic ratio. (D) OS according to the FLT3-ITD length and 2010 ELN genetic risk. AR, allelic ratio.
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the other hand, we obtained a value (0.52) that was close to significant in the analysis of the prognostic impact 
of the FLT3-ITD AR according to the 2017 ELN cutoff8.

Regarding the ITD insertion site, Kayser et al22,23 observed that adult AML patients with an ITD in the beta-1 
sheet had significantly inferior OS and DFS compared to those with ITDs located in other regions. However, 
other studies did not find significantly worse clinical outcomes in patients with non-JMD ITD mutations24,25. 
Finally, a different report showed worse clinical outcomes in terms of OS and DFS in the TKD1 group. Addition-
ally, different subdomains of TKD1 (HR or beta1-sheet) have been highlighted as those conferring an adverse 
outcome10. Therefore, there is a lack of consensus regarding the prognostic importance of the ITD IS and the 
subdomains that confer this adverse outcome. Unfortunately, in our study, information on the site of insertion 
was not available in the whole cohort, and few patients harbored a TKD1 insertion.We did not carry out a sta-
tistical analysis of the insertion site given the heterogeneity in the treatment of patients analyzed and the small 
number of patients with an ITD inserted in the TKD1 domain. We have no explanation regarding the reduced 
number of patients with an FLT3-ITD inserted in TKD1 found in our cohort.

Given the increasing importance that massive sequencing techniques are acquiring in the prognosis determi-
nation and therapeutic management of AML patients, we decided to study the possible correlation between the 
length or site of the insertion of the mutated ITD fragment and the mutational profile of these patients. We found 

Figure 3.   Analysis of FLT3-ITD insertion sites from 106 FLT3-ITD-positive AML patients. In our cohort, 
FLT3-ITD was located in the JMD domain (JMD-B, JMD-S, JMD-Z and HR) in 98 patients and in the TKD1 
domain (B1, NBL and B2) in four patients. A detailed analysis of all patients showed ITD integrations in the 
JMD-B, amino acids 572 to 578, in six patients; the JMD-S, amino acids 579 to 592, in 42 patients; the JMD-
Z, amino acids 593 to 603, in 43 patients; the HR, amino acids 604 to 609, in seven patients; the B1 of TKD1, 
amino acids 610 to 615, in one patient; the NBL, amino acids 616 to 623, in two patients; and the B2, amino 
acids 624 to 630, in one patient. TM,transmembrane domain; JMD, juxtamembrane domain; JMD-B, binding 
motif; JMD-S, switch motif; JMD-Z, zipper motif; HR, hinge region; TKD1, tyrosine kinase domain 1; B1, 
beta1-sheet; NBL, nucleotide binding loop; B2, beta2-sheet; and TKD2, tyrosine kinase domain 2.

Figure 4.   The landscape of mutations identified by NGS in AML patients. These mutations arearranged 
in increasing order by FLT3-ITD length. Green indicates non-mutated genes, red indicates mutated genes 
and white indicates non-mutated genes. * Genes with a P value < 0.05 in the Mann–Whitney test correlating 
mutational status with ITD length.
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a statistically significant correlation among SF3B1, WT1 and EZH2 mutations and ITD length. Interestingly, all 
patients with an FLT3-ITD inserted in the TKD1 domain showed DNMT3A mutations. Taking into account the 
great number of comparisons performed, we cannot assume a real relationship between these mutations. More 
studies will be necessary to confirm these results and to shed light on the possible physiopathologic relationship.

Our study has several limitations: (1) Our patients were selected from an observational registry, which 
can be interpreted as a limitation given the heterogeneity of treatments or as a strength because our data are 
thereby more similar to those observed in real-life clinical practice than those derived from a clinical trial26,27. 
(2) Larger studies analyzing ITD length also found no significant results14,23,28. However, these studies did not 
apply previously validated ITD length cutoffs obtained in other smaller series11,15–17. (3) Findings regarding the 
relationship between ITD length/site and mutational profile might be interpreted as exploratory given the high 
number of correlations performed. (4) Only five patients in our cohort received treatment with midostaurin (2 
in induction and 3 in consolidation treatment); therefore, we were not able to draw conclusions regarding the 
prognostic impact of the length of the ITD as described in previous studies29,30. The impact of prognostic factors 
may change as the AML treatment landscape evolves. (5) No data regarding minimal residual disease (MRD) 
were available in our cohort, and MRD data could be interesting to analyze in future studies.

We suggest that any investigator who wants to demonstrate the prognostic value of the ITD length applies 
some of the recurrent published thresholds used in this study or divides his cohort into training and validation 
subcohorts. The data described in the literature alongside the results that we have obtained regarding ITD muta-
tion lead us to believe that future studies should focus on the functional characterization of the protein products 
of the mutated genes. Protein alteration seems to be much more complex than the length of the mutation or the 
site of insertion; therefore, our efforts to simplify FLT3-ITD characteristicsby stratifying the risk of the patients 
may be fruitless.

In summary, in our population of 161 intensively treated FLT3-ITD AML patients, we did not validate any of 
the previously published recurrent thresholds of ITD length obtained from smaller series. Our results, alongside 
those of other non-significant reports, lead us to believe that FLT3-ITD length has neither prognostic value nor 
possible clinical application.

Material and methods
Patients and samples.  The Programa Español de Tratamientos en Hematología (PETHEMA) AML epide-
miologic registry (NCT02607059) includes patients diagnosed with AML, regardless of the treatment administered. 
The main patient and disease characteristics were collected retrospectively, including demographic characteris-
tics (age, sex), cytomorphologic assessments confirming the AML diagnosis (according to routine site practice), 
cytogenetics, molecular studies, first-line treatment approach, disease response assessment and disease follow-up. 
Patients diagnosed with acute promyelocytic leukemia (APL) were excluded. Among 729 AML patients with FLT3-
ITD mutations included in the PETHEMA AML epidemiologic registry between 2003 and 2019, FLT3-ITD length 
was available in 362: 188 males and 174 females; median age of 60.8 years (range 17.1–91.4 years). Patients were 
classified into four therapeutic groups according to the first-line approach: intensive chemotherapy (IC), n = 161; 
non-intensive therapy, n = 43; clinical trial, n = 15; and best supportive care (BSC) only, n = 7.

Among 161 intensively treated patients, 123 had the cytogenetic and molecular information required to 
calculate the 2010 ELN classification21. Prognostic impact analyses of FLT3-ITD length were performed among 
patients treated with upfront IC regimens. Furthermore, a global query was sent to the different centralized 
laboratories of PETHEMA to verify the ITD length, insertion site and molecular profile of the patients by 
NGS when these data were available. Among 362 patients, NGS was performed in 118 patients using a panel 
of 39 genes. The insertion site of FLT3-ITD was available in 106 of 118 patients (Fig. 5).The study protocol was 
conducted following the guidelines of the Declaration of Helsinki and approved by the Ethics Committee for 

Figure 5.   Flow diagram showing all AML patients with FLT3-ITD mutations in the study period between 2003 
and 2019 on the basis of genetic data and treatment administered. NGS, next-generation sequencing.
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Clinical Research of the Hospital UniversitarioFundación Jiménez Díaz (PIC169-18_FJD). Informed consent 
was a requisite for patients alive at the time of data lock (January 2019).

FLT3‑ITD testing by PCR and capillary electrophoresis.  FLT3-ITD fragment length analysis was per-
formed in seven centralized PETHEMA laboratories. All samples investigated in this study were obtained at the 
time of diagnosis. DNA was extracted using automated or manual DNA extraction kits following the manu-
facturer’s recommendations. DNA quantification was performed with a Nanodrop (Thermo Fisher Scientific, 
Waltham,MA) or Qubitfluorometer (Thermo Fisher Scientific, Waltham, MA). PCR with fluorescently labeled 
primers followed by capillary electrophoresis for FLT3-ITD was performed as described elsewhere31. ITD ampli-
cons with a size greater than that of the wild type (328 ± 1 bases) were interpreted as positive for the FLT3-ITD 
mutation. The number, area and length of mutant peaks on capillary electrophoresis were analyzed using Gen-
eMapper analysis software (Applied Biosystems, Foster City, CA). The AR was determined by fragment length 
analysis and calculated as previously described32.

Targeted next‑generation sequencing.  Samples from 118 of the 362 AML patients with FLT3-
ITD mutations were analyzed with an NGS panel of 39 genes (see Supplementary Fig. S2) in PETHEMA cen-
tralized diagnostic laboratories as previously described33. Information regarding the ITD insertion site and 
mutational status of another 38 genes recurrently mutated in myeloid neoplasms was available in 106 and 118 
patients, respectively.

Statistical analysis.  Overall survival (OS) was calculated from the date of the diagnosis of AML until death 
in all included patients. Relapse-free survival (RFS) was calculated from the date of achieving CR/CRi until the 
date of relapse (death without relapse or relapse were consideredevents)8. Complete response (CR) or complete 
responses with incomplete hematologic recovery (CRi) were defined according to current 2017 ELN guidelines8. 
Previously published cutoffs of ITD length, reported in more than one publication (i.e., 39 bp and 70 bp), were 
tested to check their applicability in our cohort. Kaplan–Meier analysis and log-rank tests were employed to 
compare different groups.We also carried out an additional OS analysis censoring patients at the time of allo-
HSCT. Stratified Kaplan–Meier analysis was also employed with the AR and genetic risk, following 2010 ELN 
guidelines21, as classifiers of the patients. CR + CRi rates between groups were compared with a chi-square test. 
FLT3-ITD length was compared between mutation and wild-type groups for each of the 39 genes using a Mann–
Whitney test. Fisher’s exact test was employed to correlate the ITD insertion site and mutational status. Statistical 
analyses were performed with SPSS 19.0 (IBM, Armonk, NY).

Ethical approval.  The study protocol was conducted following the guidelines of the Declaration of Helsinki 
and approved by the Ethics Committee for Clinical Research of the Hospital UniversitarioFundación Jiménez 
Díaz (PIC169-18_FJD).

Informed consent.  Informed consent was a requisite for patients alive at the time of data lock (January 
2019).
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