1,113 research outputs found

    Prostaglandin E2 Regulates AMPA Receptor Phosphorylation and Promotes Membrane Insertion in Preoptic Area Neurons and Glia during Sexual Differentiation

    Get PDF
    Sexual differentiation of the rodent brain is dependent upon the organizing actions of the steroid hormone, estradiol. In the preoptic area, a brain region critical for the expression of adult reproductive behavior, there are twice as many dendritic spine synapses per unit length on newborn male neurons compared to female neurons and this sex difference correlates with the expression of adult male copulatory behavior. The sex difference in the POA is achieved via estradiol's upregulation of the membrane-derived lipid signaling molecule prostaglandin E2 (PGE2); PGE2 is necessary and sufficient to masculinize both dendritic spine density and adult sexual behavior in rats. We have previously shown that PGE2 activates EP2 and EP4 receptors which increases protein kinase A (PKA) activity and that masculinized dendritic spine density and sex behavior are both dependent upon PKA as well as activation of AMPA type glutamate receptors. In the current experiments, we build upon this signaling cascade by determining that PGE2 induces phosphorylation of the AMPA receptor subunit, GluR1, which leads to increased AMPA receptor insertion at the membrane. Treating female pups on the day of birth with PGE2 induced the phosphorylation of GluR1 at the PKA-sensitive site within 2 hours of treatment, an effect that was blocked by co-administration of the PKA/AKAP inhibitor, HT31 with PGE2. Brief treatment of mixed neuronal/glial POA cultures with PGE2 or the cAMP/PKA stimulator, forskolin, increased membrane associated GluR1 in both neurons and glia. We speculate that PGE2 induced increases in AMPA receptor associated with the membrane underlies our previously observed increase in dendritic spine density and is a critical component in the masculinization of rodent sex behavior

    Steady-state modulation of voltage-gated K+ channels in rat arterial smooth muscle by cyclic AMP-dependent protein kinase and protein phosphatase 2B

    Get PDF
    Voltage-gated potassium channels (Kv) are important regulators of membrane potential in vascular smooth muscle cells, which is integral to controlling intracellular Ca2+ concentration and regulating vascular tone. Previous work indicates that Kv channels can be modulated by receptor-driven alterations of cyclic AMP-dependent protein kinase (PKA) activity. Here, we demonstrate that Kv channel activity is maintained by tonic activity of PKA. Whole-cell recording was used to assess the effect of manipulating PKA signalling on Kv and ATP-dependent K+ channels of rat mesenteric artery smooth muscle cells. Application of PKA inhibitors, KT5720 or H89, caused a significant inhibition of Kv currents. Tonic PKA-mediated activation of Kv appears maximal as application of isoprenaline (a β-adrenoceptor agonist) or dibutyryl-cAMP failed to enhance Kv currents. We also show that this modulation of Kv by PKA can be reversed by protein phosphatase 2B/calcineurin (PP2B). PKA-dependent inhibition of Kv by KT5720 can be abrogated by pre-treatment with the PP2B inhibitor cyclosporin A, or inclusion of a PP2B auto-inhibitory peptide in the pipette solution. Finally, we demonstrate that tonic PKA-mediated modulation of Kv requires intact caveolae. Pre-treatment of the cells with methyl-β-cyclodextrin to deplete cellular cholesterol, or adding caveolin-scaffolding domain peptide to the pipette solution to disrupt caveolae-dependent signalling each attenuated PKA-mediated modulation of the Kv current. These findings highlight a novel, caveolae-dependent, tonic modulatory role of PKA on Kv channels providing new insight into mechanisms and the potential for pharmacological manipulation of vascular tone

    The diacylglycerol kinase α/Atypical PKC/β1 integrin pathway in SDF-1α mammary carcinoma invasiveness

    Get PDF
    Diacylglycerol kinase α (DGKα), by phosphorylating diacylglycerol into phosphatidic acid, provides a key signal driving cell migration and matrix invasion. We previously demonstrated that in epithelial cells activation of DGKα activity promotes cytoskeletal remodeling and matrix invasion by recruiting atypical PKC at ruffling sites and by promoting RCP-mediated recycling of α5β1 integrin to the tip of pseudopods. In here we investigate the signaling pathway by which DGKα mediates SDF-1α-induced matrix invasion of MDA-MB-231 invasive breast carcinoma cells. Indeed we showed that, following SDF-1α stimulation, DGKα is activated and localized at cell protrusion, thus promoting their elongation and mediating SDF-1α induced MMP-9 metalloproteinase secretion and matrix invasion. Phosphatidic acid generated by DGKα promotes localization at cell protrusions of atypical PKCs which play an essential role downstream of DGKα by promoting Rac-mediated protrusion elongation and localized recruitment of β1 integrin and MMP-9. We finally demonstrate that activation of DGKα, atypical PKCs signaling and β1 integrin are all essential for MDA-MB-231 invasiveness. These data indicates the existence of a SDF-1α induced DGKα - atypical PKC - β1 integrin signaling pathway, which is essential for matrix invasion of carcinoma cells

    The MRN complex is transcriptionally regulated by MYCN during neural cell proliferation to control replication stress

    Get PDF
    The MRE11/RAD50/NBS1 (MRN) complex is a major sensor of DNA double strand breaks, whose role in controlling faithful DNA replication and preventing replication stress is also emerging. Inactivation of the MRN complex invariably leads to developmental and/or degenerative neuronal defects, the pathogenesis of which still remains poorly understood. In particular, NBS1 gene mutations are associated with microcephaly and strongly impaired cerebellar development, both in humans and in the mouse model. These phenotypes strikingly overlap those induced by inactivation of MYCN, an essential promoter of the expansion of neuronal stem and progenitor cells, suggesting that MYCN and the MRN complex might be connected on a unique pathway essential for the safe expansion of neuronal cells. Here, we show that MYCN transcriptionally controls the expression of each component of the MRN complex. By genetic and pharmacological inhibition of the MRN complex in a MYCN overexpression model and in the more physiological context of the Hedgehog-dependent expansion of primary cerebellar granule progenitor cells, we also show that the MRN complex is required for MYCN-dependent proliferation. Indeed, its inhibition resulted in DNA damage, activation of a DNA damage response, and cell death in a MYCN- and replication-dependent manner. Our data indicate the MRN complex is essential to restrain MYCN-induced replication stress during neural cell proliferation and support the hypothesis that replication-born DNA damage is responsible for the neuronal defects associated with MRN dysfunctions.Cell Death and Differentiation advance online publication, 12 June 2015; doi:10.1038/cdd.2015.81

    Sexual expression and cognitive function: gender-divergent associations in older adults

    Get PDF
    Prior research demonstrates a positive association between sexual activity and cognitive function in later life. However, the relationship between the type of sexual activity and cognitive function in older adulthood remains unclear. This study explores the associations between the frequency of engaging in different types of sexual activities (intercourse, masturbation, and kissing/petting/fondling) and cognitive function in older women and men. Using data from Wave 6 of the English Longitudinal Study of Ageing (ELSA), 1915 women and 2195 men (age range 50-89 years; n = 4110) reporting any type of sexual activity over the past 12 months, were included in the study. Multiple regression controlling for age, education, satisfaction with sex life, cohabiting, wealth, general health, physical activity, depression and loneliness, was used to explore the associations between the frequency of engagement in intercourse, masturbation and kissing/petting/fondling, and two measures of cognitive function; word recall and number sequencing. For women, masturbation was linked to better word recall (p = .008), whilst for men, kissing/petting/fondling was associated with better number sequencing (p = .035). In women (p = .016) and men (p = .018), dissatisfaction with sex life was associated with better number sequencing. The results point to gendered links between sexual activity and cognitive function. These gender-related divergences may reflect differences in biological/neurological mechanisms, or in cognitive lifestyle factors that could influence cognitive reserve in later life. This novel study underscores the need to delineate the underlying mechanisms of the association between sex and cognition in men and women

    Novel Indirect Calorimetry Technology to Analyze Metabolism in Individual Neonatal Rodent Pups

    Get PDF
    BACKGROUND: The ability to characterize the development of metabolic function in neonatal rodents has been limited due to technological constraints. Low respiratory volumes and flows at rest pose unique problems, making it difficult to reliably measure O(2) consumption, CO(2) production, respiratory quotient (RQ), and energy expenditure (EE). Our aim was to develop and validate a commercial-grade indirect calorimetry system capable of characterizing the metabolic phenotype of individual neonatal rodents. METHODOLOGY/PRINCIPAL FINDINGS: To address this research need, we developed a novel, highly sensitive open-circuit indirect calorimetry system capable of analyzing respiratory gas exchange in a single neonatal rodent pup. Additionally, we derived an equation from known metabolic relationships to estimate inlet flow rates, improving the efficiency of data collection. To validate the neonatal rodent indirect calorimetry system and evaluate the applicability of the derived equation for predicting appropriate flow rates, we conducted a series of experiments evaluating the impact of sex, litter size, time of day (during the light phase), and ambient temperature on neonatal rat metabolic parameters. Data revealed that the only metabolic parameter influenced by litter size is a neonatal rat's RQ, with rat pups reared in a small litter (5 pups) having lower RQ's than rat pups reared in either medium (8 pups) or large (11 pups) litters. Furthermore, data showed that ambient temperature affected all metabolic parameters measured, with colder temperatures being associated with higher CO(2) production, higher O(2) consumption, and higher energy expenditure. CONCLUSION/SIGNIFICANCE: The results of this study demonstrate that the modified Panlab Oxylet system reliably assesses early postnatal metabolism in individual neonatal rodents. This system will be of paramount importance to further our understanding of processes associated with the developmental origins of adult metabolic disease

    Natural History and Outcome of Hepatic Vascular Malformations in a Large Cohort of Patients with Hereditary Hemorrhagic Teleangiectasia

    Get PDF
    BACKGROUND: Hereditary hemorrhagic telangiectasia is a genetic disease characterized by teleangiectasias involving virtually every organ. There are limited data in the literature regarding the natural history of liver vascular malformations in hemorrhagic telangiectasia and their associated morbidity and mortality. AIM: This prospective cohort study sought to assess the outcome of liver involvement in hereditary hemorrhagic telangiectasia patients. METHODS: We analyzed 16 years of surveillance data from a tertiary hereditary hemorrhagic telangiectasia referral center in Italy. We considered for inclusion in this study 502 consecutive Italian patients at risk of hereditary hemorrhagic telangiectasia who presented at the hereditary hemorrhagic telangiectasia referral center and underwent a multidisciplinary screening protocol for the diagnosis of hereditary hemorrhagic telangiectasia. Of the 502 individuals assessed in the center, 154 had hepatic vascular malformations and were the subject of the study; 198 patients with hereditary hemorrhagic telangiectasia and without hepatic vascular malformations were the controls. Additionally, we report the response to treatment of patients with complicated hepatic vascular malformations. RESULTS: The 154 patients were included and followed for a median period of 44 months (range 12-181); of these, eight (5.2%) died from VM-related complications and 39 (25.3%) experienced complications. The average incidence rates of death and complications were 1.1 and 3.6 per 100 person-years, respectively. The median overall survival and event-free survival after diagnosis were 175 and 90 months, respectively. The rate of complete response to therapy was 63%. CONCLUSIONS: This study shows that substantial morbidity and mortality are associated with liver vascular malformations in hereditary hemorrhagic telangiectasia patients

    The Evolution of Compact Binary Star Systems

    Get PDF
    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure

    Multidimensional chemical control of CRISPR–Cas9

    Get PDF
    Cas9-based technologies have transformed genome engineering and the interrogation of genomic functions, but methods to control such technologies across numerous dimensions-including dose, time, specificity, and mutually exclusive modulation of multiple genes-are still lacking. We conferred such multidimensional controls to diverse Cas9 systems by leveraging small-molecule-regulated protein degron domains. Application of our strategy to both Cas9-mediated genome editing and transcriptional activities opens new avenues for systematic genome interrogation
    corecore