51 research outputs found

    Perancangan Fidget Device Berbasis Internet of Things

    Full text link
    Increasing stress level among the people is rising a concern. Fidget devices are proposed as a way to help relieve stress. They are easy to use and can be carried everywhere. Two of most commonly used fidget devices are fidget spinner and fidget cube. These fidget devices are believed to cope with anxiety so that users can focus their nervous energy on fidget devices. In this research, the fidget device to be discussed is the fidget cube, since it is considered as safer and has various button than the fidget spinner. Not only stress relievers, IoT-based fidget cube also has the ability to send data to a web server. It aims to see a trend or data about the user\u27s behavior, which buttons are often used by users and the frequency of using fidget cube in daily life. This data can later be used in other scientific fields.Tingkat stress di dunia mengalami kenaikan dari tahun ke tahun. Oleh karena itu, teknologi semakin berkembang menciptakan alat pengurang stres yang mudah digunakan dan dibawa kemanapun. Salah satu alat pengurang stres adalah fidget devices. Saat ini, ada dua bentuk fidget devices yang umum digunakan, yaitu fidget spinner dan fidget cube. Kedua fidget devices ini dipercaya untuk mengatasi kegelisahan sehingga pengguna dapat memusatkan kegelisahannya ke fidget devices. Dalam perancangan kali ini, fidget device yang akan dibahas adalah fidget cube karena fidget cube dirasa lebih aman dan lebih bervariasi jika dibandingkan fidget spinner. Tak hanya penghilang stres, fidget cube berbasis IoT juga memiliki kemampuan untuk mengirim data ke web server. Hal ini bertujuan untuk melihat suatu trend atau data mengenai perilaku si pengguna, tombol mana saja yang sering digunakan oleh pengguna dan frekuensi penggunaan fidget cube pada kehidupan sehari-hari. Data ini nantinya dapat digunakan dalam bidang keilmuan lainnya

    The Introduction of Growth Hormone in Murashige and Skoog Media Modifications to the Growth of Potato Plantlet (Solanum tuberosum L.) Using the Variety of Atlantic, Granola and Medians

    Get PDF
    Potato (Solanum tuberosum L.) is a horticulture plant that grow in the highland, which belong to the Solanaceae family, and is one of the world's main foodstuffs after rice, wheat, and corn, because of its advantages in supplying approximately 12 essential vitamins, minerals, proteins, carbohydrates, and iron. The demand of potato from year to year tends to increase with population growth. In this study, the addition of growth hormone in Murashige and Skoog media modification to plantlet potato (Solanum tuberosum L.) Atlantic Variance, Granola and Medians was described. MS medium was used as a potato growing medium (Solanum tuberosum L.) by hormone addition method which helped multiply the roots and accelerate plantlet height. The introduction of hormone levels were BAP (Benzil Amino Purine) 3 mg, NAA (Napthalene Acetic Acid) 1 mg, GA3 (Gibberelin) 0.1 mg, respectively. By using ANOVA Factorial analysis, the result of research showed that the significant level was α 0,05. The results showed that (1) Atlantic seed has more roots compare with the other varieties. (2) The control group has more roots compare with the hormone induced groups (3) The interaction of potato varieties with hormones affected the number of roots with p = 0,000. (4) The different variety of potatoes give influence to the height of potato plantlets. (5) The control group has higher height of plantlets compare with the hormone induced group (6) The interaction of potato varieties with hormones affected the height of the plantlet with p = 0,000

    Standardization of Clinical Assessment and Sample Collection Across All PERCH Study Sites.

    Get PDF
    BACKGROUND.: Variable adherence to standardized case definitions, clinical procedures, specimen collection techniques, and laboratory methods has complicated the interpretation of previous multicenter pneumonia etiology studies. To circumvent these problems, a program of clinical standardization was embedded in the Pneumonia Etiology Research for Child Health (PERCH) study. METHODS.: Between March 2011 and August 2013, standardized training on the PERCH case definition, clinical procedures, and collection of laboratory specimens was delivered to 331 clinical staff at 9 study sites in 7 countries (The Gambia, Kenya, Mali, South Africa, Zambia, Thailand, and Bangladesh), through 32 on-site courses and a training website. Staff competency was assessed throughout 24 months of enrollment with multiple-choice question (MCQ) examinations, a video quiz, and checklist evaluations of practical skills. RESULTS.: MCQ evaluation was confined to 158 clinical staff members who enrolled PERCH cases and controls, with scores obtained for >86% of eligible staff at each time-point. Median scores after baseline training were ≥80%, and improved by 10 percentage points with refresher training, with no significant intersite differences. Percentage agreement with the clinical trainer on the presence or absence of clinical signs on video clips was high (≥89%), with interobserver concordance being substantial to high (AC1 statistic, 0.62-0.82) for 5 of 6 signs assessed. Staff attained median scores of >90% in checklist evaluations of practical skills. CONCLUSIONS.: Satisfactory clinical standardization was achieved within and across all PERCH sites, providing reassurance that any etiological or clinical differences observed across the study sites are true differences, and not attributable to differences in application of the clinical case definition, interpretation of clinical signs, or in techniques used for clinical measurements or specimen collection

    Is Higher Viral Load in the Upper Respiratory Tract Associated With Severe Pneumonia? Findings From the PERCH Study.

    Get PDF
    BACKGROUND.: The etiologic inference of identifying a pathogen in the upper respiratory tract (URT) of children with pneumonia is unclear. To determine if viral load could provide evidence of causality of pneumonia, we compared viral load in the URT of children with World Health Organization-defined severe and very severe pneumonia and age-matched community controls. METHODS.: In the 9 developing country sites, nasopharyngeal/oropharyngeal swabs from children with and without pneumonia were tested using quantitative real-time polymerase chain reaction for 17 viruses. The association of viral load with case status was evaluated using logistic regression. Receiver operating characteristic (ROC) curves were constructed to determine optimal discriminatory viral load cutoffs. Viral load density distributions were plotted. RESULTS.: The mean viral load was higher in cases than controls for 7 viruses. However, there was substantial overlap in viral load distribution of cases and controls for all viruses. ROC curves to determine the optimal viral load cutoff produced an area under the curve of <0.80 for all viruses, suggesting poor to fair discrimination between cases and controls. Fatal and very severe pneumonia cases did not have higher viral load than less severe cases for most viruses. CONCLUSIONS.: Although we found higher viral loads among pneumonia cases than controls for some viruses, the utility in using viral load of URT specimens to define viral pneumonia was equivocal. Our analysis was limited by lack of a gold standard for viral pneumonia

    Pertussis-Associated Pneumonia in Infants and Children From Low- and Middle-Income Countries Participating in the PERCH Study.

    Get PDF
    BACKGROUND:  Few data exist describing pertussis epidemiology among infants and children in low- and middle-income countries to guide preventive strategies. METHODS:  Children 1-59 months of age hospitalized with World Health Organization-defined severe or very severe pneumonia in 7 African and Asian countries and similarly aged community controls were enrolled in the Pneumonia Etiology Research for Child Health study. They underwent a standardized clinical evaluation and provided nasopharyngeal and oropharyngeal swabs and induced sputum (cases only) for Bordetella pertussis polymerase chain reaction. Risk factors and pertussis-associated clinical findings were identified. RESULTS:  Bordetella pertussis was detected in 53 of 4200 (1.3%) cases and 11 of 5196 (0.2%) controls. In the age stratum 1-5 months, 40 (2.3% of 1721) cases were positive, all from African sites, as were 8 (0.5% of 1617) controls. Pertussis-positive African cases 1-5 months old, compared to controls, were more often human immunodeficiency virus (HIV) uninfected-exposed (adjusted odds ratio [aOR], 2.2), unvaccinated (aOR, 3.7), underweight (aOR, 6.3), and too young to be immunized (aOR, 16.1) (all P ≤ .05). Compared with pertussis-negative African cases in this age group, pertussis-positive cases were younger, more likely to vomit (aOR, 2.6), to cough ≥14 days (aOR, 6.3), to have leukocyte counts >20 000 cells/µL (aOR, 4.6), and to have lymphocyte counts >10 000 cells/µL (aOR, 7.2) (all P ≤ .05). The case fatality ratio of pertussis-infected pneumonia cases 1-5 months of age was 12.5% (95% confidence interval, 4.2%-26.8%; 5/40); pertussis was identified in 3.7% of 137 in-hospital deaths among African cases in this age group. CONCLUSIONS:  In the postneonatal period, pertussis causes a small fraction of hospitalized pneumonia cases and deaths; however, case fatality is substantial. The propensity to infect unvaccinated infants and those at risk for insufficient immunity (too young to be vaccinated, premature, HIV-infected/exposed) suggests that the role for maternal vaccination should be considered along with efforts to reduce exposure to risk factors and to optimize childhood pertussis vaccination coverage

    The Predictive Performance of a Pneumonia Severity Score in Human Immunodeficiency Virus-negative Children Presenting to Hospital in 7 Low- and Middle-income Countries.

    Get PDF
    BACKGROUND: In 2015, pneumonia remained the leading cause of mortality in children aged 1-59 months. METHODS: Data from 1802 human immunodeficiency virus (HIV)-negative children aged 1-59 months enrolled in the Pneumonia Etiology Research for Child Health (PERCH) study with severe or very severe pneumonia during 2011-2014 were used to build a parsimonious multivariable model predicting mortality using backwards stepwise logistic regression. The PERCH severity score, derived from model coefficients, was validated on a second, temporally discrete dataset of a further 1819 cases and compared to other available scores using the C statistic. RESULTS: Predictors of mortality, across 7 low- and middle-income countries, were age <1 year, female sex, ≥3 days of illness prior to presentation to hospital, low weight for height, unresponsiveness, deep breathing, hypoxemia, grunting, and the absence of cough. The model discriminated well between those who died and those who survived (C statistic = 0.84), but the predictive capacity of the PERCH 5-stratum score derived from the coefficients was moderate (C statistic = 0.76). The performance of the Respiratory Index of Severity in Children score was similar (C statistic = 0.76). The number of World Health Organization (WHO) danger signs demonstrated the highest discrimination (C statistic = 0.82; 1.5% died if no danger signs, 10% if 1 danger sign, and 33% if ≥2 danger signs). CONCLUSIONS: The PERCH severity score could be used to interpret geographic variations in pneumonia mortality and etiology. The number of WHO danger signs on presentation to hospital could be the most useful of the currently available tools to aid clinical management of pneumonia

    Global burden of respiratory infections associated with seasonal influenza in children under 5 years in 2018: a systematic review and modelling study

    Get PDF
    Background: Seasonal influenza virus is a common cause of acute lower respiratory infection (ALRI) in young children. In 2008, we estimated that 20 million influenza-virus-associated ALRI and 1 million influenza-virus-associated severe ALRI occurred in children under 5 years globally. Despite this substantial burden, only a few low-income and middle-income countries have adopted routine influenza vaccination policies for children and, where present, these have achieved only low or unknown levels of vaccine uptake. Moreover, the influenza burden might have changed due to the emergence and circulation of influenza A/H1N1pdm09. We aimed to incorporate new data to update estimates of the global number of cases, hospital admissions, and mortality from influenza-virus-associated respiratory infections in children under 5 years in 2018. Methods: We estimated the regional and global burden of influenza-associated respiratory infections in children under 5 years from a systematic review of 100 studies published between Jan 1, 1995, and Dec 31, 2018, and a further 57 high-quality unpublished studies. We adapted the Newcastle-Ottawa Scale to assess the risk of bias. We estimated incidence and hospitalisation rates of influenza-virus-associated respiratory infections by severity, case ascertainment, region, and age. We estimated in-hospital deaths from influenza virus ALRI by combining hospital admissions and in-hospital case-fatality ratios of influenza virus ALRI. We estimated the upper bound of influenza virus-associated ALRI deaths based on the number of in-hospital deaths, US paediatric influenza-associated death data, and population-based childhood all-cause pneumonia mortality data in six sites in low-income and lower-middle-income countries. Findings: In 2018, among children under 5 years globally, there were an estimated 109·5 million influenza virus episodes (uncertainty range [UR] 63·1–190·6), 10·1 million influenza-virus-associated ALRI cases (6·8–15·1); 870 000 influenza-virus-associated ALRI hospital admissions (543 000–1 415 000), 15 300 in-hospital deaths (5800–43 800), and up to 34 800 (13 200–97 200) overall influenza-virus-associated ALRI deaths. Influenza virus accounted for 7% of ALRI cases, 5% of ALRI hospital admissions, and 4% of ALRI deaths in children under 5 years. About 23% of the hospital admissions and 36% of the in-hospital deaths were in infants under 6 months. About 82% of the in-hospital deaths occurred in low-income and lower-middle-income countries. Interpretation: A large proportion of the influenza-associated burden occurs among young infants and in low-income and lower middle-income countries. Our findings provide new and important evidence for maternal and paediatric influenza immunisation, and should inform future immunisation policy particularly in low-income and middle-income countries. Funding: WHO; Bill & Melinda Gates Foundation.Fil: Wang, Xin. University of Edinburgh; Reino UnidoFil: Li, You. University of Edinburgh; Reino UnidoFil: O'Brien, Katherine L.. University Johns Hopkins; Estados UnidosFil: Madhi, Shabir A.. University of the Witwatersrand; SudáfricaFil: Widdowson, Marc Alain. Centers for Disease Control and Prevention; Estados UnidosFil: Byass, Peter. Umea University; SueciaFil: Omer, Saad B.. Yale School Of Public Health; Estados UnidosFil: Abbas, Qalab. Aga Khan University; PakistánFil: Ali, Asad. Aga Khan University; PakistánFil: Amu, Alberta. Dodowa Health Research Centre; GhanaFil: Azziz-Baumgartner, Eduardo. Centers for Disease Control and Prevention; Estados UnidosFil: Bassat, Quique. University Of Barcelona; EspañaFil: Abdullah Brooks, W.. University Johns Hopkins; Estados UnidosFil: Chaves, Sandra S.. Centers for Disease Control and Prevention; Estados UnidosFil: Chung, Alexandria. University of Edinburgh; Reino UnidoFil: Cohen, Cheryl. National Institute For Communicable Diseases; SudáfricaFil: Echavarría, Marcela Silvia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. CEMIC-CONICET. Centro de Educaciones Médicas e Investigaciones Clínicas "Norberto Quirno". CEMIC-CONICET; ArgentinaFil: Fasce, Rodrigo A.. Public Health Institute; ChileFil: Gentile, Angela. Gobierno de la Ciudad de Buenos Aires. Hospital General de Niños "Ricardo Gutiérrez"; ArgentinaFil: Gordon, Aubree. University of Michigan; Estados UnidosFil: Groome, Michelle. University of the Witwatersrand; SudáfricaFil: Heikkinen, Terho. University Of Turku; FinlandiaFil: Hirve, Siddhivinayak. Kem Hospital Research Centre; IndiaFil: Jara, Jorge H.. Universidad del Valle de Guatemala; GuatemalaFil: Katz, Mark A.. Clalit Research Institute; IsraelFil: Khuri Bulos, Najwa. University Of Jordan School Of Medicine; JordaniaFil: Krishnan, Anand. All India Institute Of Medical Sciences; IndiaFil: de Leon, Oscar. Universidad del Valle de Guatemala; GuatemalaFil: Lucero, Marilla G.. Research Institute For Tropical Medicine; FilipinasFil: McCracken, John P.. Universidad del Valle de Guatemala; GuatemalaFil: Mira-Iglesias, Ainara. Fundación Para El Fomento de la Investigación Sanitaria; EspañaFil: Moïsi, Jennifer C.. Agence de Médecine Préventive; FranciaFil: Munywoki, Patrick K.. No especifíca;Fil: Ourohiré, Millogo. No especifíca;Fil: Polack, Fernando Pedro. Fundación para la Investigación en Infectología Infantil; ArgentinaFil: Rahi, Manveer. University of Edinburgh; Reino UnidoFil: Rasmussen, Zeba A.. National Institutes Of Health; Estados UnidosFil: Rath, Barbara A.. Vienna Vaccine Safety Initiative; AlemaniaFil: Saha, Samir K.. Child Health Research Foundation; BangladeshFil: Simões, Eric A.F.. University of Colorado; Estados UnidosFil: Sotomayor, Viviana. Ministerio de Salud de Santiago de Chile; ChileFil: Thamthitiwat, Somsak. Thailand Ministry Of Public Health; TailandiaFil: Treurnicht, Florette K.. University of the Witwatersrand; SudáfricaFil: Wamukoya, Marylene. African Population & Health Research Center; KeniaFil: Lay-Myint, Yoshida. Nagasaki University; JapónFil: Zar, Heather J.. University of Cape Town; SudáfricaFil: Campbell, Harry. University of Edinburgh; Reino UnidoFil: Nair, Harish. University of Edinburgh; Reino Unid

    Causes of severe pneumonia requiring hospital admission in children without HIV infection from Africa and Asia: the PERCH multi-country case-control study

    Get PDF
    Background Pneumonia is the leading cause of death among children younger than 5 years. In this study, we estimated causes of pneumonia in young African and Asian children, using novel analytical methods applied to clinical and microbiological findings. Methods We did a multi-site, international case-control study in nine study sites in seven countries: Bangladesh, The Gambia, Kenya, Mali, South Africa, Thailand, and Zambia. All sites enrolled in the study for 24 months. Cases were children aged 1–59 months admitted to hospital with severe pneumonia. Controls were age-group-matched children randomly selected from communities surrounding study sites. Nasopharyngeal and oropharyngeal (NP-OP), urine, blood, induced sputum, lung aspirate, pleural fluid, and gastric aspirates were tested with cultures, multiplex PCR, or both. Primary analyses were restricted to cases without HIV infection and with abnormal chest x-rays and to controls without HIV infection. We applied a Bayesian, partial latent class analysis to estimate probabilities of aetiological agents at the individual and population level, incorporating case and control data. Findings Between Aug 15, 2011, and Jan 30, 2014, we enrolled 4232 cases and 5119 community controls. The primary analysis group was comprised of 1769 (41·8% of 4232) cases without HIV infection and with positive chest x-rays and 5102 (99·7% of 5119) community controls without HIV infection. Wheezing was present in 555 (31·7%) of 1752 cases (range by site 10·6–97·3%). 30-day case-fatality ratio was 6·4% (114 of 1769 cases). Blood cultures were positive in 56 (3·2%) of 1749 cases, and Streptococcus pneumoniae was the most common bacteria isolated (19 [33·9%] of 56). Almost all cases (98·9%) and controls (98·0%) had at least one pathogen detected by PCR in the NP-OP specimen. The detection of respiratory syncytial virus (RSV), parainfluenza virus, human metapneumovirus, influenza virus, S pneumoniae, Haemophilus influenzae type b (Hib), H influenzae non-type b, and Pneumocystis jirovecii in NP-OP specimens was associated with case status. The aetiology analysis estimated that viruses accounted for 61·4% (95% credible interval [CrI] 57·3–65·6) of causes, whereas bacteria accounted for 27·3% (23·3–31·6) and Mycobacterium tuberculosis for 5·9% (3·9–8·3). Viruses were less common (54·5%, 95% CrI 47·4–61·5 vs 68·0%, 62·7–72·7) and bacteria more common (33·7%, 27·2–40·8 vs 22·8%, 18·3–27·6) in very severe pneumonia cases than in severe cases. RSV had the greatest aetiological fraction (31·1%, 95% CrI 28·4–34·2) of all pathogens. Human rhinovirus, human metapneumovirus A or B, human parainfluenza virus, S pneumoniae, M tuberculosis, and H influenzae each accounted for 5% or more of the aetiological distribution. We observed differences in aetiological fraction by age for Bordetella pertussis, parainfluenza types 1 and 3, parechovirus–enterovirus, P jirovecii, RSV, rhinovirus, Staphylococcus aureus, and S pneumoniae, and differences by severity for RSV, S aureus, S pneumoniae, and parainfluenza type 3. The leading ten pathogens of each site accounted for 79% or more of the site's aetiological fraction. Interpretation In our study, a small set of pathogens accounted for most cases of pneumonia requiring hospital admission. Preventing and treating a subset of pathogens could substantially affect childhood pneumonia outcomes

    Association of C-reactive protein with bacterial and respiratory syncytial virus-associated pneumonia among children aged <5 years in the PERCH study

    Get PDF
    Background. Lack of a gold standard for identifying bacterial and viral etiologies of pneumonia has limited evaluation of C-reactive protein (CRP) for identifying bacterial pneumonia. We evaluated the sensitivity and specificity of CRP for identifying bacterial vs respiratory syncytial virus (RSV) pneumonia in the Pneumonia Etiology Research for Child Health (PERCH) multicenter case-control study. Methods. We measured serum CRP levels in cases with World Health Organization-defined severe or very severe pneumonia and a subset of community controls. We evaluated the sensitivity and specificity of elevated CRP for "confirmed" bacterial pneumonia (positive blood culture or positive lung aspirate or pleural fluid culture or polymerase chain reaction [PCR]) compared to "RSV pneumonia" (nasopharyngeal/oropharyngeal or induced sputum PCR-positive without confirmed/suspected bacterial pneumonia). Receiver operating characteristic (ROC) curves were constructed to assess the performance of elevated CRP in distinguishing these cases. Results. Among 601 human immunodeficiency virus (HIV)-negative tested controls, 3% had CRP ≥40 mg/L. Among 119 HIVnegative cases with confirmed bacterial pneumonia, 77% had CRP ≥40 mg/L compared with 17% of 556 RSV pneumonia cases. The ROC analysis produced an area under the curve of 0.87, indicating very good discrimination; a cut-point of 37.1 mg/L best discriminated confirmed bacterial pneumonia (sensitivity 77%) from RSV pneumonia (specificity 82%). CRP ≥100 mg/L substantially improved specificity over CRP ≥40 mg/L, though at a loss to sensitivity. Conclusions. Elevated CRP was positively associated with confirmed bacterial pneumonia and negatively associated with RSV pneumonia in PERCH. CRP may be useful for distinguishing bacterial from RSV-associated pneumonia, although its role in discriminating against other respiratory viral-associated pneumonia needs further study

    Global patterns in monthly activity of influenza virus, respiratory syncytial virus, parainfluenza virus, and metapneumovirus: a systematic analysis

    Get PDF
    Background: Influenza virus, respiratory syncytial virus, parainfluenza virus, and metapneumovirus are the most common viruses associated with acute lower respiratory infections in young children (<5 years) and older people (≥65 years). A global report of the monthly activity of these viruses is needed to inform public health strategies and programmes for their control. Methods: In this systematic analysis, we compiled data from a systematic literature review of studies published between Jan 1, 2000, and Dec 31, 2017; online datasets; and unpublished research data. Studies were eligible for inclusion if they reported laboratory-confirmed incidence data of human infection of influenza virus, respiratory syncytial virus, parainfluenza virus, or metapneumovirus, or a combination of these, for at least 12 consecutive months (or 52 weeks equivalent); stable testing practice throughout all years reported; virus results among residents in well-defined geographical locations; and aggregated virus results at least on a monthly basis. Data were extracted through a three-stage process, from which we calculated monthly annual average percentage (AAP) as the relative strength of virus activity. We defined duration of epidemics as the minimum number of months to account for 75% of annual positive samples, with each component month defined as an epidemic month. Furthermore, we modelled monthly AAP of influenza virus and respiratory syncytial virus using site-specific temperature and relative humidity for the prediction of local average epidemic months. We also predicted global epidemic months of influenza virus and respiratory syncytial virus on a 5° by 5° grid. The systematic review in this study is registered with PROSPERO, number CRD42018091628. Findings: We initally identified 37 335 eligible studies. Of 21 065 studies remaining after exclusion of duplicates, 1081 full-text articles were assessed for eligibility, of which 185 were identified as eligible. We included 246 sites for influenza virus, 183 sites for respiratory syncytial virus, 83 sites for parainfluenza virus, and 65 sites for metapneumovirus. Influenza virus had clear seasonal epidemics in winter months in most temperate sites but timing of epidemics was more variable and less seasonal with decreasing distance from the equator. Unlike influenza virus, respiratory syncytial virus had clear seasonal epidemics in both temperate and tropical regions, starting in late summer months in the tropics of each hemisphere, reaching most temperate sites in winter months. In most temperate sites, influenza virus epidemics occurred later than respiratory syncytial virus (by 0·3 months [95% CI −0·3 to 0·9]) while no clear temporal order was observed in the tropics. Parainfluenza virus epidemics were found mostly in spring and early summer months in each hemisphere. Metapneumovirus epidemics occurred in late winter and spring in most temperate sites but the timing of epidemics was more diverse in the tropics. Influenza virus epidemics had shorter duration (3·8 months [3·6 to 4·0]) in temperate sites and longer duration (5·2 months [4·9 to 5·5]) in the tropics. Duration of epidemics was similar across all sites for respiratory syncytial virus (4·6 months [4·3 to 4·8]), as it was for metapneumovirus (4·8 months [4·4 to 5·1]). By comparison, parainfluenza virus had longer duration of epidemics (6·3 months [6·0 to 6·7]). Our model had good predictability in the average epidemic months of influenza virus in temperate regions and respiratory syncytial virus in both temperate and tropical regions. Through leave-one-out cross validation, the overall prediction error in the onset of epidemics was within 1 month (influenza virus −0·2 months [−0·6 to 0·1]; respiratory syncytial virus 0·1 months [−0·2 to 0·4]). Interpretation: This study is the first to provide global representations of month-by-month activity of influenza virus, respiratory syncytial virus, parainfluenza virus, and metapneumovirus. Our model is helpful in predicting the local onset month of influenza virus and respiratory syncytial virus epidemics. The seasonality information has important implications for health services planning, the timing of respiratory syncytial virus passive prophylaxis, and the strategy of influenza virus and future respiratory syncytial virus vaccination. Funding: European Union Innovative Medicines Initiative Respiratory Syncytial Virus Consortium in Europe (RESCEU)
    • …
    corecore