138 research outputs found

    Should One Use the Ray-by-Ray Approximation in Core-Collapse Supernova Simulations?

    Full text link
    We perform the first self-consistent, time-dependent, multi-group calculations in two dimensions (2D) to address the consequences of using the ray-by-ray+ transport simplification in core-collapse supernova simulations. Such a dimensional reduction is employed by many researchers to facilitate their resource-intensive calculations. Our new code (F{\sc{ornax}}) implements multi-D transport, and can, by zeroing out transverse flux terms, emulate the ray-by-ray+ scheme. Using the same microphysics, initial models, resolution, and code, we compare the results of simulating 12-, 15-, 20-, and 25-M⊙_{\odot} progenitor models using these two transport methods. Our findings call into question the wisdom of the pervasive use of the ray-by-ray+ approach. Employing it leads to maximum post-bounce/pre-explosion shock radii that are almost universally larger by tens of kilometers than those derived using the more accurate scheme, typically leaving the post-bounce matter less bound and artificially more "explodable." In fact, for our 25-M⊙_{\odot} progenitor, the ray-by-ray+ model explodes, while the corresponding multi-D transport model does not. Therefore, in two dimensions the combination of ray-by-ray+ with the axial sloshing hydrodynamics that is a feature of 2D supernova dynamics can result in quantitatively, and perhaps qualitatively, incorrect results.Comment: Updated and revised text; 13 pages; 13 figures; Accepted to Ap.

    Pair Production in Low Luminosity Galactic Nuclei

    Full text link
    Electron-positron pairs may be produced near accreting black holes by a variety of physical processes, and the resulting pair plasma may be accelerated and collimated into a relativistic jet. Here we use a self-consistent dynamical and radiative model to investigate pair production by \gamma\gamma collisions in weakly radiative accretion flows around a black hole of mass M and accretion rate \dot{M}. Our flow model is drawn from general relativistic magnetohydrodynamic simulations, and our radiation field is computed by a Monte Carlo transport scheme assuming the electron distribution function is thermal. We argue that the pair production rate scales as r^{-6} M^{-1} \dot{M}^{6}. We confirm this numerically and calibrate the scaling relation. This relation is self-consistent in a wedge in M, \dot{M} parameter space. If \dot{M} is too low the implied pair density over the poles of the black hole is below the Goldreich-Julian density and \gamma\gamma pair production is relatively unimportant; if \dot{M} is too high the models are radiatively efficient. We also argue that for a power-law spectrum the pair production rate should scale with the observables L_X \equiv X-ray luminosity and M as L_X^2 M^{-4}. We confirm this numerically and argue that this relation likely holds even for radiatively efficient flows. The pair production rates are sensitive to black hole spin and to the ion-electron temperature ratio which are fixed in this exploratory calculation. We finish with a brief discussion of the implications for Sgr A* and M87.Comment: 21 pages, 10 figures, 1 table. Accepted for publication in Ap

    Pair production in low luminosity galactic nuclei

    Get PDF
    ABSTRACT We compute the distribution of pair production by γγ collisions in weakly radiative accretion flows around a black hole of mass M and accretion rateṀ . We use a flow model drawn from general relativistic magnetohydrodynamic simulations and a Monte Carlo radiation field that assumes the electron distribution function is thermal. We find that

    Parthenon -- a performance portable block-structured adaptive mesh refinement framework

    Full text link
    On the path to exascale the landscape of computer device architectures and corresponding programming models has become much more diverse. While various low-level performance portable programming models are available, support at the application level lacks behind. To address this issue, we present the performance portable block-structured adaptive mesh refinement (AMR) framework Parthenon, derived from the well-tested and widely used Athena++ astrophysical magnetohydrodynamics code, but generalized to serve as the foundation for a variety of downstream multi-physics codes. Parthenon adopts the Kokkos programming model, and provides various levels of abstractions from multi-dimensional variables, to packages defining and separating components, to launching of parallel compute kernels. Parthenon allocates all data in device memory to reduce data movement, supports the logical packing of variables and mesh blocks to reduce kernel launch overhead, and employs one-sided, asynchronous MPI calls to reduce communication overhead in multi-node simulations. Using a hydrodynamics miniapp, we demonstrate weak and strong scaling on various architectures including AMD and NVIDIA GPUs, Intel and AMD x86 CPUs, IBM Power9 CPUs, as well as Fujitsu A64FX CPUs. At the largest scale on Frontier (the first TOP500 exascale machine), the miniapp reaches a total of 1.7×10131.7\times10^{13} zone-cycles/s on 9,216 nodes (73,728 logical GPUs) at ~92% weak scaling parallel efficiency (starting from a single node). In combination with being an open, collaborative project, this makes Parthenon an ideal framework to target exascale simulations in which the downstream developers can focus on their specific application rather than on the complexity of handling massively-parallel, device-accelerated AMR.Comment: 17 pages, 11 figures, accepted for publication in IJHPCA, Codes available at https://github.com/parthenon-hpc-la

    Crucial Physical Dependencies of the Core-Collapse Supernova Mechanism

    Full text link
    We explore with self-consistent 2D F{\sc{ornax}} simulations the dependence of the outcome of collapse on many-body corrections to neutrino-nucleon cross sections, the nucleon-nucleon bremsstrahlung rate, electron capture on heavy nuclei, pre-collapse seed perturbations, and inelastic neutrino-electron and neutrino-nucleon scattering. Importantly, proximity to criticality amplifies the role of even small changes in the neutrino-matter couplings, and such changes can together add to produce outsized effects. When close to the critical condition the cumulative result of a few small effects (including seeds) that individually have only modest consequence can convert an anemic into a robust explosion, or even a dud into a blast. Such sensitivity is not seen in one dimension and may explain the apparent heterogeneity in the outcomes of detailed simulations performed internationally. A natural conclusion is that the different groups collectively are closer to a realistic understanding of the mechanism of core-collapse supernovae than might have seemed apparent.Comment: 25 pages; 10 figure

    Fast variability from black-hole binaries

    Full text link
    Currently available information on fast variability of the X-ray emission from accreting collapsed objects constitutes a complex phenomenology which is difficult to interpret. We review the current observational standpoint for black-hole binaries and survey models that have been proposed to interpret it. Despite the complex structure of the accretion flow, key observational diagnostics have been identified which can provide direct access to the dynamics of matter motions in the close vicinity of black holes and thus to the some of fundamental properties of curved spacetimes, where strong-field general relativistic effects can be observed.Comment: 20 pages, 11 figures. Accepted for publication in Space Science Reviews. Also to appear in hard cover in the Space Sciences Series of ISSI "The Physics of Accretion onto Black Holes" (Springer Publisher

    SPH Simulations of Negative (Nodal) Superhumps: A Parametric Study

    Get PDF
    Negative superhumps in cataclysmic variable systems result when the accretion disc is tilted with respect to the orbital plane. The line of nodes of the tilted disc precesses slowly in the retrograde direction, resulting in a photometric signal with a period slightly less than the orbital period. We use the method of smoothed particle hydrodynamics to simulate a series of models of differing mass ratio and effective viscosity to determine the retrograde precession period and superhump period deficit ε−\varepsilon_- as a function of system mass ratio qq. We tabulate our results and present fits to both ε−\varepsilon_- and ε+\varepsilon_+ versus qq, as well as compare the numerical results with those compiled from the literature of negative superhump observations. One surprising is that while we find negative superhumps most clearly in simulations with an accretion stream present, we also find evidence for negative superhumps in simulations in which we shut off the mass transfer stream completely, indicating that the origin of the photometric signal is more complicated than previously believed.Comment: 14 pages, 15 figures. Accepted for publication in MNRA

    GYOTO: a new general relativistic ray-tracing code

    Full text link
    GYOTO, a general relativistic ray-tracing code, is presented. It aims at computing images of astronomical bodies in the vicinity of compact objects, as well as trajectories of massive bodies in relativistic environments. This code is capable of integrating the null and timelike geodesic equations not only in the Kerr metric, but also in any metric computed numerically within the 3+1 formalism of general relativity. Simulated images and spectra have been computed for a variety of astronomical targets, such as a moving star or a toroidal accretion structure. The underlying code is open source and freely available. It is user-friendly, quickly handled and very modular so that extensions are easy to integrate. Custom analytical metrics and astronomical targets can be implemented in C++ plug-in extensions independent from the main code.Comment: 20 pages, 11 figure

    Pharmacotherapy-Based Problems in the Management of Diabetes Mellitus: Needs Much More to be Done!

    Get PDF
    A total of 856 diabetic patients were evaluated for pharmacotherapy-based problems like for possible drug interactions, adverse drug reactions, and other mismatches, if any. Poor correlation between the advised insulin therapy and patients’ fasting blood glucose levels (12%, n=103) was observed. To most of the patients (41.66%, n= 357), insulin therapy was advised in combination with glucocorticoides, thiazides diuretics, and propranolol. Prescribing beta blocker (propranolol) with insulin is contraindicated. The higher incidence of diabetic foot patients was in the mean age of 57±3.4 years that was controlled with combination therapy of insulin and oral antidiabetics (63.0%, n=516). 11.1% of the treated patients could not take the prescribed therapy due to poor acceptance of insulin therapy due to its syringe needle prick. 41.66% risks of potential drug interactions, 7.93% adverse drug reactions, and 6.6% mismatches were recorded, as per the international approved algorithm, for managing a diabetes mellitus that reflects poor health care system. All these events necessitate for coordinating with other health professionals to make the therapy safer in the better interest of the patients. It is concluded that in practice prescribing pattern carries more risks for patients. It is imperative to improve the practice of pharmacotherapeutics rather than to practice in routine
    • …
    corecore