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M. Mościbrodzka1, C. F. Gammie1,2, J. C. Dolence2, H. Shiokawa2

1 Department of Physics, University of Illinois, 1110 West Green Street, Urbana, IL 61801

2 Astronomy Department, University of Illinois, 1002 West Green Street, Urbana, IL 61801

ABSTRACT

We compute the distribution of pair production by γγ collisions in weakly

radiative accretion flows around a black hole of mass M and accretion rate Ṁ .

We use a flow model drawn from general relativistic magnetohydrodynamic sim-

ulations and a Monte Carlo radiation field that assumes the electron distribution

function is thermal. We find that: (1) there is a wedge in the (M, Ṁ) plane

where the near-empty funnel over the poles of the black hole is populated mainly

by pair production in γγ collisions; (2) the wedge is bounded at low accretion

rate by a region where the pair density implied by the γγ production rate falls

below the Goldreich-Julian density. (3) the wedge is bounded at high accretion

rate by Ṁcrit. For Ṁ > Ṁcrit the models are not weakly radiative and our models

are inconsistent, but γγ collisions likely still dominate; (4) within the wedge the

pair production rate density scales as ∼ Ṁ6, declines as radius r−6, and declines

away from the equatorial plane. We provide expressions for the pair production

rate as a function of Ṁ and also as a function of the X-ray luminosity LX and

the X-ray spectral index. We finish with a brief discussion of the implications for

Sgr A* and M87.

Subject headings: accretion, accretion disks — black hole physics — MHD —

radiative transfer — Galaxy: center

1. Introduction

Models of zero-obliquity black hole accretion—in which the accretion flow angular mo-

mentum is parallel to the black hole spin—typically exhibit a low density “funnel” over the

poles of the black hole. The funnel is empty because the funnel plasma is free to fall into the

hole or blow outward to large radius. Magnetic fields do not prevent this: in magnetohy-

drodynamic (MHD) simulations of funnels in radiatively inefficient accretion flows (RIAFs)

the funnel magnetic field runs in a smooth spiral from the event horizon to large radius (De
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Villiers et al. 2003; McKinney & Gammie 2004; Komissarov 2005; Hawley & Krolik 2006;

Beckwith et al. 2008). And because the field lines do not leave the funnel there is no resupply

route from the disk to the funnel.

What process, then, populates the funnel with plasma? And what controls the tem-

perature (or distribution function) of the funnel plasma? These questions bear directly on

two interesting problems in black hole jet theory: are jets made of pairs or an electron-ion

plasma? And which is more luminous: the base of the jet or the accretion flow? The purpose

of this paper is to investigate these questions in the specific context of hot, underluminous

accretion flows where nearly ab initio models are computationally feasible.

There are several pair creation processes that might populate the funnel with plasma.

Plasma close to the event horizon in a RIAF is relativistically hot, and thus can form

electron-positron pairs e± through particle-particle (ee, ep), particle-photon (eγ, pγ), or

photon-photon collisions (γγ). The cross section near the e± energy threshold is largest for

γγ interactions, which have a cross section ∼ σT ≡ 8πr20/3 ≈ 6.652×10−25 cm2, the Thomson

cross section. In the funnel the photon density vastly exceed the particle density, so γγ

collisions dominate e± production (Stepney & Guilbert 1983, Phinney 1983, Phinney 1995,

Krolik 1999). Equilibrium pair production by these processes in the context of Advection

Dominated Accretion Flows (ADAFs, Narayan & Yi 1994) is discussed in e.g. Kusunose &

Mineshige 1996 and Esin 1999; however these works focus on the energetic role of pairs in

ADAF disk rather than the population and dynamics of pairs in the funnel.

At densities below the Goldreich-Julian density (Goldreich & Julian 1969), pairs can

be created in a pair-photon cascade (Blandford & Znajek 1977; Phinney 1983; Beskin et al.

1992; Hirotani & Okamoto 1998, and recently Vincent & Lebohec 2010). When the density

is low the plasma can have E ·B 6= 0, and the electric field can directly accelerate particles

to high Lorentz factors. The energetic particles can then Compton upscatter background

photons that collide with other background photons and produce a shower of pairs.

In this paper we model production of an e± plasma by photon-photon collisions in the

funnel above a hot, underluminous accretion disk. At sufficiently low accretion rates Ṁ

(. Ṁcrit ∼ 10−6LEdd/(0.1c
2), where LEdd ≡ Eddington luminosity) the disk will cool only

over timescales much larger than the accretion timescale; it is a RIAF. In this regime the

radiative and dynamical evolution are decoupled and it is practical to treat both on a nearly

ab initio basis. Throughout the range of Ṁ we consider the funnel pair plasma is tenuous,

so pair production will be balanced by advective losses (accretion into the black hole or loss

in a wind) rather than by annihilation.

We draw our RIAF model from two and three dimensional general relativistic magne-
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tohydrodynamics simulations (GRMHD, using the HARM code, Gammie et al. 2003) of an

accreting, magnetized torus with zero cooling. The radiation field is calculated as a post-

processing step using a Monte Carlo method (grmonty, Dolence et al. 2009). Finally pair

production rates are estimated in a Monte Carlo fashion from snapshots of the radiation

field using a procedure that we describe in detail below.

This paper is organized as follows. In § 2 we describe the basic model for accretion

flow dynamics and radiative transfer. In § 3 we write down the pair production model and

present a test problem for our Monte Carlo scheme. Scaling formulas are presented in § 4.

In § 5 we show results of simulations for varying black hole mass and accretion rate. We

briefly discuss implications for Sgr A*and M87 in § 6. We summarize in § 7.

2. Accretion flow model

We use a numerical model for the accretion flow and for the radiation field. These

nearly ab initio models form a numerical laboratory for investigating physical processes near

a black hole.

2.1. Dynamical model

We use a relativistic MHD model for the accreting plasma (see e.g., Gammie et al. 2003).

The model begins with a hydrodynamic equilibrium thick disk (Fishbone & Moncrief 1976)

in orbit around a Kerr black hole. The initial torus is seeded with poloidal, concentric loops

of weak magnetic field that is parallel to density contours, and small perturbations are added

to the internal energy. The latter seeds the magnetorotational instability and leads to the

development of MHD turbulence in the disk and accretion onto the central black hole. We

solve the evolution equations until a quasi-equilibrium accretion flow is established, meaning

that the large scale structure of the flow is not evolving on the dynamical timescale. Our

models describe accretion onto a black hole with a∗ = 0.94, where a∗ ≡ Jc/GM2 and J

is the angular momentum of the black hole. Our numerical model covers 40GM/c2. Our

(untested) hypothesis is that at r < 15GM/c2 the model accurately represent the inner

portions of a relaxed accretion flow extending over many decades in radius. Throughout our

model we assume the mass of the accretion flow is small compared to M and that the metric

is stationary.

A few of the physical assumptions in the GRMHD model are worth stating explicitly.



– 4 –

We use a γad-law equation of state

p = (γad − 1)u (1)

where γad = 13/9 (appropriate for ion temperature Ti < mpc
2/k = 1.1× 1013K and electron

temperature Te > mec
2/k = 5.9× 109K), p ≡ pressure, and u ≡ internal energy density. We

also assume particle number conservation

(ρ0u
µ);µ = 0, (2)

where ρ0 ≡ rest-mass density and uµ ≡ four-velocity, in the dynamical evolution. That is,

we do not explicitly allow for pair production in the dynamical model and instead calculate

the pair production rate as a post-processing step. Our model is, therefore, consistent only

if pair creation is weak enough not to alter the dynamics or energetics.

We evolve the GRMHD equations using the harm code (Gammie et al. 2003). harm

is a conservative scheme that evolves the total energy rather than internal energy of the

flow. The MHD equation integration is performed on a uniform grid in modified Kerr-Schild

coordinates (Gammie et al. 2003). The coordinates are logarithmic in the Kerr-Schild radius

r and nonuniform in Kerr-Schild colatitude θ (Boyer-Lindquist and Kerr-Schild r and θ are

identical), concentrating zones toward the midplane of the accretion disk. The Kerr-Schild

coordinates are nonsingular on the horizon, so we can extend the numerical grid through the

horizon and isolate the inner boundary inside the black hole. The outer boundary uses an

outflow condition. Our axisymmetric models have numerical resolution of 256 × 256, while

the 3D run has resolution of 192 × 192 × 128. The details of the numerical method, the

initial setup and full discussion of the flow evolution in 2D see Gammie et al. (2003) and

McKinney & Gammie (2004). A snapshot of the density, temperature, and magnetic field

strength from one of our runs is shown in Figure 1.

2.2. Radiative model

Applications of radiative models to Sgr A* are discussed in Mościbrodzka et al. (2009).

In a thermal plasma with Θe ≡ kTe/(mec
2) > 1 the ratio (synchrotron / bremsstrahlung)

cooling ∼ Θ2
e/(αβ), where α ≡ fine structure constant and β ≡ 8πp/B2. Synchrotron

therefore dominates in an energetic sense the direct production of photons in the inner

regions of the flow that we model here, where Θe ∼ 1 − 102 and β ∼ 10. Synchrotron

emission occurs at a characteristic frequency νs ∼ (eB/(2πmec))Θ
2
e which is ≪ mec

2/h
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for any astrophysically reasonable combination of M and Ṁ . 1. Potentially pair-producing

photons must therefore be produced by Compton scattering, and so our model includes

synchrotron emission, absorption, and Compton scattering.

We compute the radiation field using a Monte Carlo general relativistic radiative transfer

code grmonty(Dolence et al. 2009); here we outline grmonty’s most important features. The

radiation field is represented by photon packets (photon rays or ‘superphotons’). Each super-

photon is characterized by the photon weight w = number of physical photons/superphotons,

and the wave four-vector kµ. The superphotons are produced by sampling the emissivity.

The wavevector is then transported according to the geodesic equation. Along a geodesic w

is decremented to account for synchrotron absorption. Compton scattering is incorporated

by sampling scattering events. When a superphoton scatters it is divided into a scattered

piece with new wavevector k′µ and new weight w′, and an unscattered piece along the original

wavevector with weight w − w′. The distribution of scattered k′µ is consistent with the full

Klein-Nishina differential cross section.

We have used a “fast light” approximation in treating the radiative transfer. The data

from a single time slice tn (e.g. ρ0(tn, x
1, x2, x3)) is used to calculate the emergent radiation

field as if the data, and therefore photon field, were time-independent. We have checked,

via a time-dependent radiative transfer model (Dolence et al. 2010), that this approximation

does not introduce significant errors.

2.3. Model scaling

The dynamical models of a nonradiative accretion are scale free but their radiative

properties are not. We specify the simulations length unit

L ≡ GM

c2
, (4)

1For the synchrotron emissivity we use the approximate expression of Leung et al. (2010)

jν =

√
2πe2neνs

3cK2(Θ
−1
e )

(X1/2 + 211/12X1/6)2 exp(−X1/3) (3)

where X = ν/νs, νs = 2/9(eB/2πmec)Θ
2
e sin θ is the synchrotron frequency, θ is an angle between the

magnetic field vector and emitted photon, and K2 is a modified Bessel function of the second kind. The

fractional error for this approximate formula is smaller than 1% for Θe ≥ 1 (where most of the emission

occurs) and increases to 10% and more at low frequencies for Θe ≤ 1 (where there is very little emission).

The synchrotron emissivity function peaks at ν ≈ 8νs.
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time unit

T ≡ GM

c3
, (5)

and mass unit M, which is proportional to the mass accretion rate. M does not set a mass

scale because it appears only in the combination GM . Since M is negligible in comparison

to M there is a scale separation between the two masses.

Once M , and therefore L and T , and M are set the radiative transfer calculation is

well posed. Typically M can be estimated from observation, while M is set by requiring the

model submillimeter flux match observations.

2.4. Model limitations

It is worth pointing out some of our model’s limitations. The plasma is treated as a

nonradiating ideal fluid. This implies that the electrons and ions have an isotropic, thermal

distribution function. The potentially important effects of pressure anisotropy and conduc-

tion are therefore negelected (e.g. Sharma et al. 2006, Johnson & Quataert 2007). The

radiative effects of a nonthermal component in the distribution function are also neglected.

Cooling is also neglected. This is likely to be unimportant in very low accretion rate systems

like Sgr A*, but far more important in higher accretion rate systems like M87. The sign

of the effect of neglecting cooling is to raise the density and magnetic field strength, if the

synchrotron luminosity is held fixed.

3. Pair production

We now consider how the Monte Carlo description of the radiation field can be trans-

formed into an estimate for the pair creation rate.

3.1. Basic equations

For a population of photons with distribution function dNγ/d
3xd3k (here d3k ≡ dk1dk2dk3

and 1, 2, 3 are the spatial coordinates) the invariant pair production rate per unit volume is

ṅ± ≡ 1√−g
dN±

d3xdt
=

1

2

∫

d3k√−gkt
d3k′√−gk′t

dNγ

d3xd3k

dNγ

d3xd3k′
ǫ2[CM ]σγγc (6)
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where g is the determinant of gµν , and the factor of 1/2 prevents double-counting. Here σγγ
is the cross section for γ + γ → e+ + e−:

σγγ
σT

=
3

8 ǫ[CM]
6

[

(2 ǫ[CM]
4 + 2 ǫ[CM]

2 − 1) cosh−1 ǫ[CM] − ǫ[CM]( ǫ[CM]
2 + 1)

√

ǫ[CM]
2 − 1

]

(7)

(Breit & Wheeler 1936),

ǫ[CM] = −uCMµk
µ = −uCMµk

′µ =

(−kµk′µ
2

)1/2

(8)

is the energy of either photon in the center of momentum ([CM]) frame of the two photons,

and uCM is the four-velocity of the [CM] frame.

Equation 6 is invariant since
√−gd3xdt is coordinate invariant, the distribution function

is invariant (because d3xd3k is invariant), ǫ[CM] is a scalar, the cross section is invariant, and

d3k/
√−gkt is invariant. It also reduces to the correct rate (cf. eq. 12.7 of Landau &

Lifshitz, Classical Theory of Fields) in Minkowski space, and is therefore the correct general

expression for the pair production rate. Because ṅ± itself is invariant it also describes the

pair creation rate in the fluid frame.

We will also calculate the rate of four-momentum transfer from the radiation field to

the plasma via pair creation:

Gµ ≡ 1√−g
dP µ

±

d3xdt
= A

1

2

∫

d3k√−gkt
d3k′√−gk′t

dNγ

d3xd3k

dNγ

d3xd3k′
(kµ + k′µ) ǫ2[CM ]σγγc. (9)

Here A is a constant that makes the equation dimensionally correct.

3.2. Monte Carlo estimate of pair creation rate

We evaluate the integrals (6) and (9) using a Monte Carlo estimate. Given a sample of

photons on a time slice t within a small three-volume ∆3x, a naive estimate is

1√−g
dN±

d3xdt
≈ 1

2

∑

i 6=j

( wi

∆3x

)( wj

∆3x

) 1√−gkti
1√−gktj

ǫ2[CM ]σγγc (10)

where there are Ns superphotons in ∆3x. The number of possible pairs of colliding super-

photons scales is O(N2
s ) and so does the computational cost. One might expect that the

error would scale as 1/
√

N2
s because there are O(N2

s ) pairs, but this is wrong. There are

only Ns independent samples and so the error scales as 1/
√
Ns. We can obtain an estimate
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with accuracy that is the same order as (10) at a cost that is O(Ns) using

1√−g
dN±

d3xdt
≈ 1

2

Ns − 1

2

∑

i 6=j

( wi

∆3x

)( wj

∆3x

) 1√−gkti
1√−gktj

ǫ2[CM ]σγγc (11)

An identical procedure can be used to evaluate Gµ.

3.3. Test problem

Does our Monte Carlo procedure accurately estimate the pair production rate? As a

simple test, we consider two isotropic point sources of monoenergetic radiation in Minkowski

space in Cartesian coordinates (so
√−g = 1), and assume the optical depth to pair creation

is small. Both sources emit photons of energy 4mec
2.

We calculate the expected pair production rate (Equation 6) at each point and compare

the result with the numerical solution provided by the radiative transfer code. The energy

of two colliding photons in their center-of-momentum frame is a function of the cosine of

the angle between the rays from the two sources: ǫ2[CM ] = (1/2)(1 − µ)ktk′t. The photon

momentum space distribution are δ functions for monoenergetic point sources. The number

density of photons at distance r from the source is dNγ/d
3x = Ṅγ/(4πr

2c), where each source

produces photons at a rate Ṅγ.

In Figure 2 we show a 2-D map of the Monte Carlo estimate of the pair production rate

in the plane of the two sources. In Figure 3 we show a slice of the analytical and numerical

pair production rates (upper panel) along the black contour line showed in Figure 2 together

with the difference plot (lower panel). The error of the numerical solution declines as N
−1/2
s ,

as demonstrated in Figure 4, where Ns is the number of photon packets emitted by each

source; the pair production code is working correctly.

4. RIAF scaling laws

What are the expected pair production rates? If we have a self-consistent model for

a radiatively inefficient accretion flow and the implied radiation field, and we know M and

Ṁ , we can directly estimate the pair production rate. This may not be possible if a self-

consistent model is unavailable—if, for example, the accretion rate is high and the models are

radiatively efficient. An alternative is to use the observed spectrum and some assumptions

about the source geometry to estimate the radiation field within the source, then use this

to estimate the pair production rate. We will follow both lines of argument and show
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that they are consistent for slowly accreting, weakly radiative models, then argue that the

estimate based on the observed spectrum likely applies to more rapidly accreting models

where radiative cooling is important.

ṅ± depends on the photon distribution over energy E = ǫmec
2 within the source. Our

models produce a nearly power-law high energy spectrum of photons with high energy cutoff

ǫmax ≫ 1, so we set
dn

dE
=

n0

mec2
ǫαe− ǫ/ ǫmax (12)

We evaluated the pair production rate numerically for this energy distribution, and fit to

the result over −3 < α < 2 and 10 < ǫmax < 160, finding

ṅ±

n2
0σT c

≃ 1

16
e2α/3(

4

3
+ ǫα/2max)

4 ln(
ǫmax

2
) (13)

(see also Zdziarski 1985 for a similar expression in the ǫmax ≫ 1 limit). At worst the fit is

≈ 2 too small for α ≈ 0 and ǫmax = 160. For α < −2, which is typical of our models, the

relative error is smaller than 60%.

For α > 0 (d ln νLν/d ln ν > 2) most pair production occurs near ǫmax, and ṅ± is

sensitive to ǫmax. For α < 0, most pair production occurs near mec
2 in the center-of-

momentum frame, there is an equal contribution from each logarithmic interval in energy,

and the pair production rate is only logarithmically sensitive to ǫmax.

Our models have α . −2, so ṅ± is insensitive to ǫmax and we can set ṅ± ∼ n2
0σT c,

where n0 is the effective number density of pair-producing photons ∼ L512/(4πL2mec
3),

where L512 ≡ νLν(512keV). Then

ṅ± ≃
(

L512

mec2
1

L2c

)2

σT c× f(
r

L , µ). (14)

where f is a dimensionless function and r and θ = cos−1 µ are the usual BL and KS radius

and colatitude; recall that L = GM/c2 is a characteristic lengthscale.

What do we expect for the spatial distribution of pair production f? The pair-producing

photons are made by upscattering synchrotron photons in a ring of hot gas near the innermost

stable circular orbit (ISCO). Away from this ring the density of photons will fall off as ∼ 1/r2.

In Equation 11, there is a geometrical factor ǫ[CM]
2/kt1k

t
2 ∝ 1 − cosψ, where ψ is the angle

between the photon trajectories in the coordinate frame. At large distance ψ . 1 so this

factor is ∝ 1/r2, thus ṅ± ∼ r−6. Because upscattered photons are beamed into the plane

of the disk the pair production rate should fall off away from the midplane as the density,

which can be fit with ρ ∼ exp(−θ/(2σ2
ρ)). So ṅ± ∼ exp(−θ/(2σ2

±)), with σρ ∼ σ±. In sum,

we expect f ∼ exp(−θ/(2σ2
±))/r

6.



– 10 –

4.1. Scalings with model parameters

Now suppose we know the mass M = m8M8 (where we define M8 ≡ 108M⊙) and the

accretion rate Ṁ = ṁṀEdd, where ṀEdd ≡ LEdd/( ǫrefc
2) and ǫref = 0.1 is a reference ac-

cretion efficiency. We will assume that photons are produced in a low frequency synchrotron

peak and then scattered to ∼ 512 keV by nsc Compton scatterings, where nsc is 1 or 2.

For a plasma that is optically thin to synchrotron absorption at peak, the total num-

ber of synchrotron photons at the peak frequency produced per unit time is Ṅνpeak ≃
4πνpeakjνpeakL3/(hνpeak), where jνpeak is the synchrotron emissivity 2. The number density of

synchrotron photons is then nνpeak ≃ Ṅνpeak/(4πL2c).

A fraction τnsc of the peak photons are upscattered to 512 keV, where τ = σTneL is the

Thomson depth of the plasma, so n512 = nνpeakτ
nsc . The mean number of Compton scatter-

ings is nsc = log(mec
2/hνpeak)/ logA, where A ≈ 16Θ2

e is the photon energy enhancement in

single scattering by a relativistic electron, so

nsc ≃ a1 + a2 log
m8

ṁ
. (15)

We determine a1 and a2 numerically but for a reference model with ṁ = 10−8 and m8 =

4.5× 10−2 (Sgr A*), the average value of nsc ≈ 1− 2.

Assuming Ṁ ∼ 4πρcL, the magnetic pressure is comparable to the gas pressure and

both are ∼ ρc2, the plasma density, magnetic field strength, and plasma temperature (close

to the virial temperature) scale as

ne ≃
1

ǫref

(

c2

GM8σT

)(

ṁ

m8

)

(16)

B2

8π
≃ 1

ǫref

(

mpc
4

GM8σT

)(

ṁ

m8

)

(17)

and

Θe ≃
1

30

mp

me

. (18)

Combining, the pair production rate is

ṅ± ≃ A
(

1

r30T

)

ǫ
−(2nsc+3)
ref α2

f

mp

me

ṁ3+2nsc f(
r

L , µ), (19)

where A is a constant to be determined numerically, r0 ≡ e2/(mec
2) is the classical electron,

αf is the fine structure constant. From now on we will set ǫ
−(2nsc+3)
ref = 10−6, i.e. ǫref =

2jνpeak
≃ 8

√
2e3neB/(27mec

2), see Leung et al. 2010
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0.1 and nsc = 3/2; since nsc depends logarithmically on ṁ and m8, this is equivalent to

suppressing a weak power-law dependence on ṁ and m8. Then

ṅ± ≃ 9× 1039 A m−1
8 ṁ6 f(

r

L , µ), (20)

where we have assumed nsc = 3/2.

For the estimating a jet kinetic luminosity it is useful to estimate the total rate at which

pairs are produced:

Ṅ± =

∫

r>rhor

√−g d3x ṅ± (21)

where rhor is the horizon radius. Then

Ṅ± ≃ ṅ±L3 ≃ 1078 A ṁ3+2nscm2
8 s−1 (22)

The number of pairs that escape to large radius (“free pairs”) is a small multiple of this,

and includes only those pairs that are made inside the funnel, at radius outside a stagnation

radius rst, inside which pairs fall immediately into the hole.

Evidently the pair production rate is very sensitive to the mass accretion rate, ṅ± ∼ ṁ6.

This steep dependence shuts off pair production at low accretion rates, and makes it difficult

for ṁ systems like Sgr A* to populate their funnel with pairs. Indeed, the pair production

rate is so low that the implied charge density in the funnel likely falls below the Goldreich-

Julian charge density (see §5.4).

4.2. Scalings with observables

Now suppose that we do not know the spectrum from first principles, but instead we

know onlyM , the X-ray luminosity LX ≡ lxL⊙ (assuming isotropic emission), and the X-ray

spectral index αX = d log(νLν)/d log ν|2−10keV .

If the spectrum is power-law from the X-ray up to MeV energy,

L512(LX) ≈ LXe
4.92αX , (23)

ṅ± ≈ B
(

c3σTL
2
⊙

m2
eG

4M4
8

)

l2X e(9.26αX) m−4
8 f(

r

L , µ) (24)

where B is a constant to be determined numerically and (c3σTL
2
⊙/m

2
eG

4M4
8 ) ≈ 10−8 cm−3s−1.

The total rate at which pairs are produced is

Ṅ± ≃ ṅ±L3 ≃ B (
σTL

2
⊙

m2
eGM8c3

) l2X e9.26αX m−1
8 (25)
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where (σTL
2
⊙/m

2
eGM8c

3) = 1031 s−1. The dependence on black hole mass changes between

Equations (24) and (25) because L ∝ m8.

5. Pair production in RIAF - numerical results

We are now in a position to evaluate the pair production rate numerically, check whether

it matches the expected scaling laws, and evaluate f(r, µ). To do this, we have run simu-

lations with a range of M and Ṁ , assuming that the models have equal ion and electron

temperatures, Te = Ti. A list of model parameters is given in Table 1.

5.1. Pair creation rate

5.1.1. Dependence on model parameters: ṁ, m

The spatial distribution of ṅ± in models A through H (see Table 1) is well fit by

ṅ±(r, µ) = 3× 1040ṁ3+2nscm−1
8 × (

r

L)−6e−µ2/(2σ2

±) cm−3 s−1 (26)

that is A ≃ 3 in equation (20), where again we set ǫ−3−2nsc

ref = 10−6. The constant in

Equation 26 is estimated assuming that the electrons and ions are well coupled and Ti/Te = 1.

It is worth noting that the constant drops sharply for higher temperature ratios; e.g. for

Ti/Te = 3, it is 10−4 times smaller.

The dependence ṅ± ∼ r−6 at large radius, as expected. Surprisingly, this power law

provides a good fit to the pair production rate all the way in to the horizon. It follows that

the abundance of free pairs will depend sensitively on the structure of the magnetosphere at

the stagnation radius rst.

The pair production scale height σ± ≈ 0.3 independently of ṁ, m. This is nearly

identical to σρ, the plasma scale height. Notice that σ± also controls the fraction produced

inside the funnel fjet; typically fjet=10%. The funnel wall is at

µ2 = µ2
f =

r + 0.4GM/c2

r + 4GM/c2
. (27)

Figure 5 shows a 2D contour map of ṅ± corresponding to model C and the analytic fit to the

time averaged distribution of ṅ±, along with a contour marking the approximate boundary

of the funnel. The grid averaged fractional difference between time averaged MHD models
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A through H and analytical formula given by Equation (26) is < 60%. Since ṅ± is a steeply

declining function of µ2, almost all free pairs are made near the funnel walls.

A fit to the total number of pairs produced (not the total number of free pairs; this

include pairs produced in the accretion flow near the equatorial plane) yields

Ṅ± = 4× 1080ṁ3+2nscm2
8 s

−1 (28)

where nsc = 1. + 0.03 logm8/ṁ. Figure 6 presents the comparison of the time averaged

numerical estimate of Ṅ± from MHD runs to the fitting formula given by Equation 28,

without the factor fjet.

5.1.2. Dependence on observable parameters: lX , αX , m

Our numerical experiments show that ṅ± depends on lX , αX , and m according to

ṅ±(r, µ) = 10−8 l2Xe
9.26αXm−4

8 × (
r

L)−6e−µ2/2σ2

± cm−3 s−1. (29)

i.e. B ≃ 1 in Equation (24). The fractional difference between the numerical results and

above formula is < 50% for time averaged models A-L. The total number of pairs created in

the system is

Ṅ± = 5× 1030 l2Xe
(9.26αX)m−1

8 s−1 (30)

Figure 7 compares Ṅ± to the semianalytic formula given by Equation 30 for different snap-

shots of the simulations with different mass accretion rates (models A-C) and black hole

masses (models F-H). The semianalytic and numerical results agree well, and the scaling

constants are close to those estimated in §4.

5.2. Pair power and electromagnetic luminosity of a funnel

We define the “luminosity” of pair creation in the funnel as

L± = fjetṄ±2mec
2Γjet (31)

where fjet is a fraction of pairs produced in the magnetically dominated funnel, and Γjet is

the jet bulk Lorentz factor at large radius (this assumes cold flow). As a function of model

parameters,

L± ≃ 6× 1074fjetṁ
3+2nscm2

8Γjet ergs s
−1 (32)
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and in terms of the X-ray luminosity and X-ray spectral index

L± ≃ 1025fjetl
2
Xe

9.26αXm−1
8 Γjet ergs s

−1 (33)

It is interesting to compare this with the Blandford-Znajek (BZ), or electromagnetic,

luminosity of the funnel

LBZ = 2π

∫

σmag>1

dθ
√−gT r

t (34)

where T r
t = b2urut − brbt is the electromagnetic part of the stress-energy tensor and is

computed directly from the numerical simulation data. We integrate the flux through the

horizon only in the magnetically dominated region (σmag > 1; the peak magnetic flux per

unit “area” is on the equator, and declines toward the pole, so the peak flux in the funnel is

along the funnel wall).

The BZ luminosity is calculated numerically using formula 34 and we find the following

fitting function expressed in terms of the model parameters:

LBZ ≈ 8× 1045(1−
√

1− a2∗)
2 ṁm8 ergs s−1 (35)

The electromagnetic luminosity scale factor ∼ ML2/T 3, and we need to introduce additional

m8 in the scaling formula, because ṀEdd ∼ M . The scaling with the a∗ is taken from

Equation (61) of McKinney & Gammie 2004, which is a fit to their numerical data.

Then for Sgr A* mass and a∗ = 0.94, LBZ > L±/Γjet for ṁ < ṁcrit ≈ 10−6 (for ṁcrit see

§ 6.1). At low accretion rates the BZ luminosity completely dominates the pair luminosity,

because the pair luminosity is such a steep function of accretion rate. Notice that, because

L± ∼ m2
8 while LBZ ∼ m8, the ṁ at which two luminosities are equal, is higher for lower

mass black holes. L±/LBZ ratio is shown in the Table 1. We conclude that, unless Γjet ≫ 1,

the funnel luminosity is electromagnetically dominated for most radiatively inefficient flows.

5.3. Energy-momentum deposition

Some of the pairs created in the funnel will escape to large radius and some will fall into

the black hole. In an MHD model, the escaping fraction and asymptotic Lorentz factor will

depend on the run of pair creation rate with radius, the magnetic field structure, the energy

density of the pair plasma, and the pair-creation four-force Gµ.

Based on numerical calculations the spatial distribution of Gµ is well fit, with x ≡ r/L,
by

G0
code(r, µ) = G0L2T 2

M ≈ 300

x

ṅ±(x, µ)mec

M/(L2T 2)
(36)
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G1
code(x, µ) = G1L2T 2

M ≈ 20(x− xst)

x2
ṅ±(x, µ)mec

M/(L2T 2)
(37)

G2
code(x, µ) = G2L2T 2

M ≈ µ

x2
ṅ±(x, µ)mec

M/(L2T 2)
(38)

G3
code(x, µ) = G3L2T 2

M ≈ 150

x2
ṅ±(x, µ)mec

M/(L2T 2)
(39)

where M, T ,L, and ṅ± are given in cgs units. The four-force vector components are given

in a Kerr-Schild coordinate basis and in code units; we divide Gµ in cgs units by the unit of

the four-force density M/L2T 2. All components of the four-force depend more steeply on

radius than ṅ±. The radial component of the four-force is positive at large radius, zero at

xst ≈ xISCO(1+µ
2/2), and negative at small radius. The sign of G2 changes at the equatorial

plane, as it should.

Pairs are created in the funnel with an initial distribution function. This distribution

is immediately isotropized with respect to rotation around the magnetic field line. Later

evolution of the distribution function will depend on ill-understood relaxation processes; the

pairs may not relax. Whether or not relaxation occurs the initial mean energy of the particles

is of interest. So: what is the energy distribution of the created pairs dṅ±/d log γe±[FF ], where

γe±[FF ] is the Lorentz factor of new particles measured in the fluid frame [FF]?

Four-momentum is conserved in the pair-creation process, so the average Lorentz factor

of the new leptons in the fluid frame is

γe±[FF ] = −1

2
uµ(k

µ + k′µ) (40)

where uµ is four-velocity of the background plasma and we assume that kµ is in units of

mec
2. Figure 8 shows dṅ±/d log γe±[FF ] in model C at three different radii r = rh, risco, 5Rg

(averaged over 20 radial zones from θ = 0−10 deg for higher signal-to-noise; here rh ≡ event

horizon radius). The injected energy distribution peaks at γe±[FF ] ∼ a few and has a cut-off

at γe±[FF ]max ≈ 100.

If the thermalization timescale is short (which, given the low density and likely high

temperature of the plasma, seems unlikely to us), then the rate of internal energy injection

due to e± creation is u̇ = ė±, where the kinetic energy density injection rate, in the plasma

frame, is 3

ė± =

∫

dγe±[FF ] (γe±[FF ] − 1)mec
2 dṅ±

dγe±[FF ]

(41)

3The same ė± can be obtained by transforming Gµ from coordinate into the fluid frame and subtracting

the rest mass energy.
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The corresponding temperature of the newly injected pairs is Θe± = (1/3)ė±/(ṅ±mec
2) ≈

20, 10, 3 at r = rh, risco, and 5M , respectively. This temperature is slightly below that of the

thermal background plasma, and is sub-virial. Pairs are not born hot.

The entropy of the injected pairs is likely to increase over the initial entropy. The funnel

is exposed to “acoustic” radiation from the accretion disk. A small fraction of the MHD

waves generated by turbulence in the disk will propagate toward the funnel, be transmitted

at the funnel wall, and dissipate within the funnel. Because the density of the funnel is so

low, even a small fraction of the disk acoustic luminosity is capable of raising the pair plasma

temperature to Θe ≫ 1 before it can escape at Lorentz factor Γ2
jet ≫ 1. Until the magnitude

of turbulent heating can be estimated, the dynamics of the funnel pair plasma is extremely

uncertain.

5.4. Comparison to Goldreich-Julian density

Is the charge number density implied by ṅ± sufficient to enforce the ideal MHD condition

E = 0 in the rest frame of the plasma (uµF
µν = 0): does the pair number density exceed

the Goldreich-Julian density nGJ?

A naive estimate of nGJ uses the flat-space Goldreich-Julian charge number density

nGJ ≃ ΩB

4πec
=

a∗Bc
2

32πGMe
(42)

where the field rotation frequency in the funnel Ω = (a∗/8)c
3/(GM) in the Blandford-Znajek

model at a∗ . 1. For our standard Sgr A* model with B ∼ 30G, a∗ ≃ 0.94,M ≃ 4.5×106M⊙,

this yields nGJ ≃ 10−3 cm−3.

A better estimate uses the Blandford-Znajek model for a monopole magnetosphere. We

use Kerr-Schild coordinates (t, r, θ, φ) and define the Goldreich-Julian density as the charge

density measured in the frame of the normal observer, who to lowest (zeroth) order in a∗
has four-velocity nµ = (−(1 + 2/r)−1/2, 0, 0, 0). Using the current density Jµ derived from

the BZ monopole solution as given in McKinney & Gammie (2004) we find, to lowest order

in a∗,

n′
GJ ≡ −nµJ

µ =
a∗B

rc2

4πGMe

(1 + 2/x)1/2 cos θ

x3
(43)

where again x ≡ r/L and Br is the radial component of the field at x = 1 (see McKinney &

Gammie 2004 for a definition of Br). This is very close to the naive estimate. Notice that

n′
GJ ∼ Br cos θ so the charge density changes sign from one hemisphere to the other. This

is an artifact of the monopole model. If instead the field is allowed to change sign from one
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hemisphere to the other, but within each funnel is modeled as a monopole then the sign is

consistent. Also notice that n′
GJ ∼ 1/r3, so the requirement on charge density is strongest

close to the horizon even if the magnetosphere contains a wind with n ∼ 1/r2.

A still better estimate for nGJ would use the simulation-derived currents. We have

calculated these and the charge densities are consistent with the estimates just given. Using

estimates for Br from § 4, we can derive a scaling with ṁ and m:

nGJ ∼ 3× 10−1 a∗ ṁ
1/2m

−3/2
8 cm−3 (44)

near x = 2, and a ratio of this to a characteristic number density of pairs near the horizon

at the funnel axis n± ∼ ṅ±T ≈ 5× 1040ṁ6 (using Equation 26 and µ = 1):

nGJ

n±

∼ 6× 10−42 a∗ṁ
−11/2m

−3/2
8 . (45)

Again this is the ratio on the axis. Although the Goldreich-Julian density varies only weakly

across the funnel, the pair production rate in our fiducial model is about 20 time larger at the

funnel wall at x ∼ 2. At very low ṁ, where nGJ ∼ n±, the center of the funnel is populated

by some other process—perhaps a pair cascade— and the edges by pair production in γγ

collisions.

6. Discussion

6.1. Selfconsistency of the models

Our models are selfconsistent with they are both radiatively inefficient and the implied

pair density ṅ±T is greater than the Goldreich-Julian density. Figure 9 shows the parameter

range for which our scalings for production of e± pairs in the funnel are fully selfconsistent

(shaded region). The solid line represents models for which pairs density equals the nGJ

density near the horizon for black hole spin a∗ = 0.94, assuming that pairs escape from the

funnel on the light crossing time. The model is radiatively inefficient when LBol/Ṁc2 . 0.1.

The efficiency of ≃ 10%, can be translated into a critical value of ṁ. Our numerical estimates

give ṁcrit ≈ 10−6 if Ti/Te = 1. In Figure 9, the ṁcrit is marked as a vertical dashed line

(for Ti/Te > 1, ṁcrit increases). Our models are therefore fully selfconsistent in a wedge

in parameter space, and are never applicable to stellar mass black holes. The estimates for

pair production rates based on the observed X-ray luminosity may nevertheless be applicable

even in radiatively efficient accretion flows.
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6.2. Sgr A*

A bright radio source associated with a supermassive black hole (MBH = 4.5× 106M⊙)

in the Galactic center, Sgr A*, is a weak X-ray source (‘quiescent’ emission LX . 1033ergs s−1)

and it is strongly sub-Eddington (L/LEdd ≈ 10−9). To model Sgr A*, we refer to Mościbrodzka

et al. (2009), which suggests the most probable spin of the black hole a∗ = 0.94, temperature

ratio Ti/Te = 3, and ṁ = 2×10−8. The ṅ± rate for these parameters is slightly lower than in

the scaling laws because of Ti/Te 6= 1. For the purposes of this subsection only, we consider

3D models which, it turns out, have ṅ± very similar to the 2D models. All models assume

the accretion flows lies in the equatorial plane of the black hole. The emergent radiation is

calculated using the Monte Carlo code grmonty (Dolence et al. 2009).

During the quiescent state the X-ray luminosity is lX < 1 and pair production near the

horizon in the funnel, in model I, is ṅ± ≈ 10−9 s−1, measured directly from the simulations.

The corresponding light crossing time is T ≈ 20s, and so a typical pair density near the

horizon in the funnel is n± ≈ 10−8cm−3. This is five orders of magnitude below nGJ ≈
10−3cm−3. In quiescence the funnel must therefore be populated by a process other than γγ

pair production process considered here, for example a pair cascade.

It is known, however, that Sgr A*exhibits intraday variability at all observed wave-

lengths (radio, sub-mm, NIR, and X-rays). In particular in the X-ray band (2-10 keV)

luminosity may increase up to 160 times (e.g. the brightest flare detected has luminosity of

LX = 5.4×1034 Porquet et al. 2008) from the ‘quiescent’ level and last a few ks. During such

a bright flare the X-ray slope can change, and the pair production rate may reach or exceed

nGJ . Even during a flare the funnel kinetic luminosity is far below the Blandford-Znajek

luminosity (see Table 1) for any reasonable Γjet. We conclude that close to the black hole

any jet in Sgr A* is electromagnetically dominated.

6.3. M87

The core of M87 hosts a sub-Eddington supermassive black hole, MBH = 3 × 109M⊙

(Marconi et al. 1997, but see Gebhardt & Thomas 2009). M87 has a prominent radio jet

resolved from 100GM/c2−1kpc. Models in which the jet is a pair plasma appear to be more

consistent with the data than models in which the jet is composed of ion-electron plasma

(Reynolds et al. 1996). The application of our models to this object is difficult because the

SED of M87 emitted from the inner 100 Rg is most likely contaminated by the emission from

the jet.

As in Sgr A*, for M87 we assume a∗=0.94. The inclination of disk with respect to the
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observer, i = 30 deg (Heinz & Begelman 1997), and again we assume that the accretion disk

lies in the equatorial plane of the black hole, that the electron distribution function is thermal,

and that Ti/Te = 3. The modeled SED of M87 is normalized via fν(ν = 230GHz) = 2Jy at

17 Mpc (Tan et al. 2008). We find that the zero cooling, 2D model with ṁ = 1.5 × 10−6

(model K) which can reproduce the 230GHz flux, have too large a radiative efficiency to be

consistent with RIAF assumptions (see Table 1).

To model the source selfconsistently, we have run axisymmetric models that include

synchrotron cooling in the dynamical evolution of the accretion disk (model L). This pro-

cedure reduces the radiative efficiency by a factor of 100, to ∼ 30%, which is still too high,

but much closer to self-consistency. Future models will incorporate both synchrotron cool-

ing and Compton cooling. For model L, LX = 1041ergss−1, L± = 7 × 1036ergss−1, and

LBZ ≈ 1041ergss−1.

We find that the spatial distribution of pair production is very similar to that in models

without cooling. In model L, the implied pair density n± = ṅ±T ≈ 10 cm−3 (T ≈ 104

s), which is 107 times larger than nGJ ≈ 10−6cm−3 in almost the entire computational

domain. The pair luminosity in both models K and L is still smaller than electromagnetic

luminosity by factor of 0.1 and 10−5, respectively. The base of the jet is optically thin,

τ± ≈ n±LσT ≈ 10−10 for pair annihilation.

A separate, more nearly model-independent, estimate of the total pair production rate

can be obtained from the X-ray spectrum of M87 using Equation (30). We use LX ≃ 3×1041;

this is the 7 × 1040 from Di Matteo et al. (2003) corrected upward to an isotropic X-ray

luminosity because our models emit X-rays anisotropically into the equatorial plane. We

also set αX = 0. Then Ṅ± ≃ 1045s−1, which implies LK = fjetṄ±mec
2Γjet = 8× 1038Γjetfjet.

This is too small to account for the estimated kinetic luminosity of the jet for fjet < 0.1 (and

probably closer to 0.01; the fraction of free pairs depends on the dynamics of pairs close to

the horizon) and Γjet < 100, since LK is estimated to be > 3 × 1042ergss−1 (Young et al.

2002). Notice that our nearly consistent model L has LBZ ≃ 1041ergss−1.

Can the M87 jet be composed of pairs? The alternatives are (1) the jet is composed

of pairs and they are not produced by γγ collisions close to the black hole. For example,

there could be direct particle acceleration to large Γ that permits pair production from low

energy photons. (2) the jet is composed of pairs but the black hole in M87 has a∗ > 0.93,

and increasing spin sharply increases the pair production rate, both for models that infer

Ṅ± from a fully self-consistent model, and those that infer Ṅ± from X-ray measurements.

This is consistent with our preliminary investigations of dependence of pair production rate

on spin; (3) the jet is composed of pairs but our models simply miss or mis-estimate an

important physical feature of the flow. This scenario has to contend with the direct estimate
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of the pair production rate from M87’s spectrum in the last paragraph, which suggests that

the pair production rate is too low by > 1.5 orders of magnitude; (4) the jet is composed of

pairs, but the observational estimates of the jet kinetic luminosity are too large; (5) the jet

is composed of an electron-ion plasma, which may be accelerated in the funnel walls.

7. Summary

We have studied the electron-positron pair production rates in the black hole magne-

tospheres by γγ collisions. Our pair productuon rates simulations are based on a GRMHD

time dependent model of magnetized disk around spinning black hole. The disk is a source

of high energy radiation formed in multple Compton scatterings of synchrotron photons. We

performed nearly ab-initio calculations of the photon-photon collisions rates within 40GM/c2

of the event horizon, using Monte Carlo techniques.

Our main result are the analytical formulas for spatial distribution of pair production

rates, which normalizing factor is a well defined function of the global parameters of the

system (m,ṁ,LX ,αX). The pair plasma is injected with a power-law- like energy distribution.

Most of pair plasma is created in the equatorial plane of the thick disk, due to strong Doppler

beaming of radiation. The pair plasma has neqligible effect on the RIAF dynamical evolution

which is consistent with previous results by Esin 1999 and Kusunose & Mineshige 1996, if

the pair plasma density in the disk is estimated assuming that it escapes on viscous time

scale instead of in light crossing time scale (i.e. it is coupled to the disk plasma).

Only a few percent of all pairs are created in the magnetized funnel (black hole magne-

tosphere), and most of pairs in the funnel are created near its wall. Pair jets are optically

thin for photons with frequencies ν > νt = 10−3n±L Hz (for example, for M87 L = 4× 1014,

and n± = 10, turnover frequency νt = 1012 Hz).

We also find than the general relativistic RIAF models are selfconsistent up to ṁcrit ≈
10−6, which is a little smaller than e.g. ṁcrit = 5× 10−6 reported by Fragile & Meier 2009.

For higher ṁ one must couple the radiation evolution into the dynamical model.

Models with ṁ < ṁcrit have force-free, Thomson thin jets with the Blandford-Znajek

luminosity much larger than pair kinetic luminosity. In models with very small ṁ, the pair

plasma density in the funnel is much lower than the Goldreich-Julian density, suggesting

that another process, such as a pair cascade, will operate and populate the funnel.

We have avoided discussing spin dependence to limit the size of the parameter space,

but our preliminary investigations suggest that ṅ± is very sensitive to spin. Higher spin



– 21 –

black holes are smaller and therefore have higher compactness, and at fixed accretion rate

tend to have harder spectra.
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Table 1. List of GRMHD models.

ID a∗ m8 < ṁ >t LBol/LEdd radiative L±/(LBZΓj) note

efficiency

A 0.94 4.5× 10−2 2× 10−9 10−11 7× 10−4 10−17 2D

B 0.94 4.5× 10−2 6× 10−9 10−10 2× 10−3 10−15 2D

C 0.94 4.5× 10−2 1× 10−8 4× 10−10 4× 10−3 10−13 2D

D 0.94 4.5× 10−2 5× 10−8 2× 10−8 0.02 10−10 2D

E 0.94 4.5× 10−2 1× 10−7 6× 10−8 0.04 10−8 2D

F 0.94 4.5× 10−3 1× 10−8 5× 10−10 5× 10−3 10−14 2D

G 0.94 4.5× 10−1 1× 10−8 4× 10−10 4× 10−3 10−12 2D

H 0.94 4.5 1× 10−8 3× 10−8 3× 10−3 10−11 2D

Sgr A*

I 0.94 4.5× 10−2 2.7× 10−8 5× 10−10 2× 10−3 10−11 3D-quiescent,Ti/Te = 3

J 0.94 4.5× 10−2 5.3× 10−8 1× 10−9 3× 10−3 10−9 3D-weak flare, Ti/Te = 3

M87

K 0.94 30 1.5× 10−6 3× 10−4 16.5 0.1 2D - w/o cooling

L 0.94 30 1× 10−6 3× 10−6 0.3 4× 10−5 2D - w/ syn cooling

Note. — From left to right columns are: model ID, dimensionless spin of the black hole, the black hole mass

in units of M⊙, the rest mass accretion rate through the black hole horizon in units of Eddington mass accretion

rate (ṀEdd = 2.22m8 M⊙yr−1) averaged over later times of the simulation (∆t = 1500− 2000T ), the Eddington

ratio LBol/LEdd, the model radiative efficiency η = LBol/Ṁc2 (LBol is the RIAF luminosity integrated over

emitting angles and frequencies), ratio of Kinetic to electromagnetic luminosity, and comments on models. Models

I & J correspond to Sgr A*while K&L model core of M87. Run L accounts for synchrotron cooling terms in the

dynamical solution so the pair production rate is slightly reduced.
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Fig. 1.— Structure of RIAF. Panels from left to right: density distribution, β plasma

parameter, and dimentionless temperature, respectively.
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Fig. 2.— Test problem: the pair production rate in a plane of two, isotropic point sources

of high energy radiation (kt1 = kt2 = 4mec
2). Pair production rate is given here in units of

Ṅ2
γT/L

3, where L is a length unit, Ṅγ is a number of photons produced by each source per

unit time T. Pair production rate is zero in two side regions because the energy of photons

in the center-of-momentum frame is below the threshold energy there. The pair production

rate is symmetric with respect to the axis connecting two sources. Black contour - see Fig 3.
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Fig. 3.— Test problem: upper panel: Analytical (green line) and numerical (red points) pair

production rates, along the black contour in Figure 2. Lower panel: The fractional difference

between analytical and numerical solutions.
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Fig. 4.— Test problem: the grid averaged fractional difference between the numerical and

analytical pair production rates as a function of number of photons packets produced by each

source Ns. The dashed line is proportional to N
−1/2
s . For Ns = 107 the average difference

per zone is about 7%, for Ns = 108 it is on average less than 3%.
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Fig. 5.— Spatial distribution of ṅ±in RIAF model C (points) and the contours of corre-

sponding fitting function given by Equation 26 (lines). The fractional difference between

model and data in this case is < 40%. Black contours mark the black hole horizon and the

funnel wall.
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Fig. 6.— Pair production rate dependence on the model parameters. Comparison of the

total pair production rate Ṅ± to the fitting formula for models with various mass accretion

rates ṁ (A-E, blue filled symbols), and black hole masses m (F-H, red open symbols). The

Ṅ±(analytical) is given by Equation 28.
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Fig. 7.— Pair production rate dependence on observable parameters. Comparison of the to-

tal pair production rate Ṅ± to the fitting formula for models with different X-ray luminosities

(νLν)2−10keV , X-ray spectral index αX and masses. Filled circles, open squares, and crosses

correspond to different snapshots in models A, B, and C, respectively. Open circles mark

time averaged data from models with different masses (F, G, and H). The Ṅ±(analytical) is

given by Equation 30.



– 31 –

Fig. 8.— The energy distribution of e± pairs produced in the magnetized funnel where

γ = γe±[FF ] is measured in the plasma frame at different radii (model C).



– 32 –

Fig. 9.— Fitting formulas are fully selfconsistent with the model assumptions for m and ṁ

within the shaded region. Two solid lines mark regions where the nGJ equals to the pair

density at the funnel axis and funnel wall. LLGN of interest are marked as open circles.


