123 research outputs found

    The SDSS Galaxy Angular Two-Point Correlation Function

    Full text link
    We present the galaxy two-point angular correlation function for galaxies selected from the seventh data release of the Sloan Digital Sky Survey. The galaxy sample was selected with rr-band apparent magnitudes between 17 and 21; and we measure the correlation function for the full sample as well as for the four magnitude ranges: 17-18, 18-19, 19-20, and 20-21. We update the flag criteria to select a clean galaxy catalog and detail specific tests that we perform to characterize systematic effects, including the effects of seeing, Galactic extinction, and the overall survey uniformity. Notably, we find that optimally we can use observed regions with seeing < 1\farcs5, and rr-band extinction < 0.13 magnitudes, smaller than previously published results. Furthermore, we confirm that the uniformity of the SDSS photometry is minimally affected by the stripe geometry. We find that, overall, the two-point angular correlation function can be described by a power law, ω(θ)=Aωθ(1−γ)\omega(\theta) = A_\omega \theta^{(1-\gamma)} with γ≃1.72\gamma \simeq 1.72, over the range 0\fdg005--10\degr. We also find similar relationships for the four magnitude subsamples, but the amplitude within the same angular interval for the four subsamples is found to decrease with fainter magnitudes, in agreement with previous results. We find that the systematic signals are well below the galaxy angular correlation function for angles less than approximately 5\degr, which limits the modeling of galaxy angular correlations on larger scales. Finally, we present our custom, highly parallelized two-point correlation code that we used in this analysis.Comment: 22 pages, 17 figures, accepted by MNRA

    Should One Use the Ray-by-Ray Approximation in Core-Collapse Supernova Simulations?

    Full text link
    We perform the first self-consistent, time-dependent, multi-group calculations in two dimensions (2D) to address the consequences of using the ray-by-ray+ transport simplification in core-collapse supernova simulations. Such a dimensional reduction is employed by many researchers to facilitate their resource-intensive calculations. Our new code (F{\sc{ornax}}) implements multi-D transport, and can, by zeroing out transverse flux terms, emulate the ray-by-ray+ scheme. Using the same microphysics, initial models, resolution, and code, we compare the results of simulating 12-, 15-, 20-, and 25-M⊙_{\odot} progenitor models using these two transport methods. Our findings call into question the wisdom of the pervasive use of the ray-by-ray+ approach. Employing it leads to maximum post-bounce/pre-explosion shock radii that are almost universally larger by tens of kilometers than those derived using the more accurate scheme, typically leaving the post-bounce matter less bound and artificially more "explodable." In fact, for our 25-M⊙_{\odot} progenitor, the ray-by-ray+ model explodes, while the corresponding multi-D transport model does not. Therefore, in two dimensions the combination of ray-by-ray+ with the axial sloshing hydrodynamics that is a feature of 2D supernova dynamics can result in quantitatively, and perhaps qualitatively, incorrect results.Comment: Updated and revised text; 13 pages; 13 figures; Accepted to Ap.

    Pair Production in Low Luminosity Galactic Nuclei

    Full text link
    Electron-positron pairs may be produced near accreting black holes by a variety of physical processes, and the resulting pair plasma may be accelerated and collimated into a relativistic jet. Here we use a self-consistent dynamical and radiative model to investigate pair production by \gamma\gamma collisions in weakly radiative accretion flows around a black hole of mass M and accretion rate \dot{M}. Our flow model is drawn from general relativistic magnetohydrodynamic simulations, and our radiation field is computed by a Monte Carlo transport scheme assuming the electron distribution function is thermal. We argue that the pair production rate scales as r^{-6} M^{-1} \dot{M}^{6}. We confirm this numerically and calibrate the scaling relation. This relation is self-consistent in a wedge in M, \dot{M} parameter space. If \dot{M} is too low the implied pair density over the poles of the black hole is below the Goldreich-Julian density and \gamma\gamma pair production is relatively unimportant; if \dot{M} is too high the models are radiatively efficient. We also argue that for a power-law spectrum the pair production rate should scale with the observables L_X \equiv X-ray luminosity and M as L_X^2 M^{-4}. We confirm this numerically and argue that this relation likely holds even for radiatively efficient flows. The pair production rates are sensitive to black hole spin and to the ion-electron temperature ratio which are fixed in this exploratory calculation. We finish with a brief discussion of the implications for Sgr A* and M87.Comment: 21 pages, 10 figures, 1 table. Accepted for publication in Ap

    Pair production in low luminosity galactic nuclei

    Get PDF
    ABSTRACT We compute the distribution of pair production by γγ collisions in weakly radiative accretion flows around a black hole of mass M and accretion rateṀ . We use a flow model drawn from general relativistic magnetohydrodynamic simulations and a Monte Carlo radiation field that assumes the electron distribution function is thermal. We find that

    Parthenon -- a performance portable block-structured adaptive mesh refinement framework

    Full text link
    On the path to exascale the landscape of computer device architectures and corresponding programming models has become much more diverse. While various low-level performance portable programming models are available, support at the application level lacks behind. To address this issue, we present the performance portable block-structured adaptive mesh refinement (AMR) framework Parthenon, derived from the well-tested and widely used Athena++ astrophysical magnetohydrodynamics code, but generalized to serve as the foundation for a variety of downstream multi-physics codes. Parthenon adopts the Kokkos programming model, and provides various levels of abstractions from multi-dimensional variables, to packages defining and separating components, to launching of parallel compute kernels. Parthenon allocates all data in device memory to reduce data movement, supports the logical packing of variables and mesh blocks to reduce kernel launch overhead, and employs one-sided, asynchronous MPI calls to reduce communication overhead in multi-node simulations. Using a hydrodynamics miniapp, we demonstrate weak and strong scaling on various architectures including AMD and NVIDIA GPUs, Intel and AMD x86 CPUs, IBM Power9 CPUs, as well as Fujitsu A64FX CPUs. At the largest scale on Frontier (the first TOP500 exascale machine), the miniapp reaches a total of 1.7×10131.7\times10^{13} zone-cycles/s on 9,216 nodes (73,728 logical GPUs) at ~92% weak scaling parallel efficiency (starting from a single node). In combination with being an open, collaborative project, this makes Parthenon an ideal framework to target exascale simulations in which the downstream developers can focus on their specific application rather than on the complexity of handling massively-parallel, device-accelerated AMR.Comment: 17 pages, 11 figures, accepted for publication in IJHPCA, Codes available at https://github.com/parthenon-hpc-la

    GRMHD simulations of accretion onto Sgr A*: How important are radiative losses?

    Full text link
    We present general relativistic magnetohydrodynamic (GRMHD) numerical simulations of the accretion flow around the supermassive black hole in the Galactic centre, Sagittarius A* (Sgr A*). The simulations include for the first time radiative cooling processes (synchrotron, bremsstrahlung, and inverse Compton) self-consistently in the dynamics, allowing us to test the common simplification of ignoring all cooling losses in the modeling of Sgr A*. We confirm that for Sgr A*, neglecting the cooling losses is a reasonable approximation if the Galactic centre is accreting below ~10^{-8} Msun/yr i.e. Mdot < 10^{-7} Mdot_Edd. But above this limit, we show that radiative losses should be taken into account as significant differences appear in the dynamics and the resulting spectra when comparing simulations with and without cooling. This limit implies that most nearby low-luminosity active galactic nuclei are in the regime where cooling should be taken into account. We further make a parameter study of axisymmetric gas accretion around the supermassive black hole at the Galactic centre. This approach allows us to investigate the physics of gas accretion in general, while confronting our results with the well studied and observed source, Sgr A*, as a test case. We confirm that the nature of the accretion flow and outflow is strongly dependent on the initial geometry of the magnetic field. For example, we find it difficult, even with very high spins, to generate powerful outflows from discs threaded with multiple, separate poloidal field loops.Comment: Resubmitted to MNRAS, including modifications in response to referee report. 13 pages, 15 figure

    GYOTO: a new general relativistic ray-tracing code

    Full text link
    GYOTO, a general relativistic ray-tracing code, is presented. It aims at computing images of astronomical bodies in the vicinity of compact objects, as well as trajectories of massive bodies in relativistic environments. This code is capable of integrating the null and timelike geodesic equations not only in the Kerr metric, but also in any metric computed numerically within the 3+1 formalism of general relativity. Simulated images and spectra have been computed for a variety of astronomical targets, such as a moving star or a toroidal accretion structure. The underlying code is open source and freely available. It is user-friendly, quickly handled and very modular so that extensions are easy to integrate. Custom analytical metrics and astronomical targets can be implemented in C++ plug-in extensions independent from the main code.Comment: 20 pages, 11 figure

    Crucial Physical Dependencies of the Core-Collapse Supernova Mechanism

    Full text link
    We explore with self-consistent 2D F{\sc{ornax}} simulations the dependence of the outcome of collapse on many-body corrections to neutrino-nucleon cross sections, the nucleon-nucleon bremsstrahlung rate, electron capture on heavy nuclei, pre-collapse seed perturbations, and inelastic neutrino-electron and neutrino-nucleon scattering. Importantly, proximity to criticality amplifies the role of even small changes in the neutrino-matter couplings, and such changes can together add to produce outsized effects. When close to the critical condition the cumulative result of a few small effects (including seeds) that individually have only modest consequence can convert an anemic into a robust explosion, or even a dud into a blast. Such sensitivity is not seen in one dimension and may explain the apparent heterogeneity in the outcomes of detailed simulations performed internationally. A natural conclusion is that the different groups collectively are closer to a realistic understanding of the mechanism of core-collapse supernovae than might have seemed apparent.Comment: 25 pages; 10 figure

    SPH Simulations of Negative (Nodal) Superhumps: A Parametric Study

    Get PDF
    Negative superhumps in cataclysmic variable systems result when the accretion disc is tilted with respect to the orbital plane. The line of nodes of the tilted disc precesses slowly in the retrograde direction, resulting in a photometric signal with a period slightly less than the orbital period. We use the method of smoothed particle hydrodynamics to simulate a series of models of differing mass ratio and effective viscosity to determine the retrograde precession period and superhump period deficit ε−\varepsilon_- as a function of system mass ratio qq. We tabulate our results and present fits to both ε−\varepsilon_- and ε+\varepsilon_+ versus qq, as well as compare the numerical results with those compiled from the literature of negative superhump observations. One surprising is that while we find negative superhumps most clearly in simulations with an accretion stream present, we also find evidence for negative superhumps in simulations in which we shut off the mass transfer stream completely, indicating that the origin of the photometric signal is more complicated than previously believed.Comment: 14 pages, 15 figures. Accepted for publication in MNRA
    • …
    corecore