152 research outputs found

    Po částech lineární neuronová síť - porovnání efektivity trénovacích algoritmů

    Get PDF
    In this article, a benchmark of algorithms for training of piecewise-linear artificial neural networks is introduced. At first, motivation of this article is described for a special topology of the neural network is used. This topology can be advantageously used in system control design, but it is difficult problem to train it. In this article, there is described a set of possible training algorithms, these algorithms are tested and evaluated. Benchmarking data are based on real problems.V článku je představen benchmark několika trénovacích algoritmů pro učení umělé neuronové sítě s po částech lineárními aktivačními funkcemi. V první části článku je představena použitá topologie neuronové sítě a její využití, dále jsou pak popsány možné algoritmy učení a tyto algoritmy jsou pak testovány a porovnány. K testování jsou použita data reálných procesů

    TRACKING OF MOVING O BJECT IN 3 D

    Get PDF
    The contribution presents the process of two and three dimensional localization of the moving object using a camera system, possible remote data transmission through communication links and image acquisition problems. Moving object recognition is provided by one possible approach - frames difference method, which represents object tracking at any background, image processing was done in MATLAB and the application example is presented by online tracking of moving robot MINDSTOR

    Advances in plant chromosome genomics

    Get PDF
    AbstractNext generation sequencing (NGS) is revolutionizing genomics and is providing novel insights into genome organization, evolution and function. The number of plant genomes targeted for sequencing is rising. For the moment, however, the acquisition of full genome sequences in large genome species remains difficult, largely because the short reads produced by NGS platforms are inadequate to cope with repeat-rich DNA, which forms a large part of these genomes. The problem of sequence redundancy is compounded in polyploids, which dominate the plant kingdom. An approach to overcoming some of these difficulties is to reduce the full nuclear genome to its individual chromosomes using flow-sorting. The DNA acquired in this way has proven to be suitable for many applications, including PCR-based physical mapping, in situ hybridization, forming DNA arrays, the development of DNA markers, the construction of BAC libraries and positional cloning. Coupling chromosome sorting with NGS offers opportunities for the study of genome organization at the single chromosomal level, for comparative analyses between related species and for the validation of whole genome assemblies. Apart from the primary aim of reducing the complexity of the template, taking a chromosome-based approach enables independent teams to work in parallel, each tasked with the analysis of a different chromosome(s). Given that the number of plant species tractable for chromosome sorting is increasing, the likelihood is that chromosome genomics – the marriage of cytology and genomics – will make a significant contribution to the field of plant genetics

    Influence of process parameters on content uniformity of a low dose active pharmaceutical ingredient in a tablet formulation according to GMP

    Get PDF
    The article describes the development and production of tablets using direct compression of powder mixtures. The aim was to describe the impact of filler particle size and the time of lubricant addition during mixing on content uniformity according to the Good Manufacturing Practice (GMP) process validation requirements. Processes are regulated by complex directives, forcing the producers to validate, using sophisticated methods, the content uniformity of intermediates as well as final products. Cutting down of production time and material, shortening of analyses, and fast and reliable statistic evaluation of results can reduce the final price without affecting product quality. The manufacturing process of directly compressed tablets containing the low dose active pharmaceutical ingredient (API) warfarin, with content uniformity passing validation criteria, is used as a model example. Statistic methods have proved that the manufacturing process is reproducible. Methods suitable for elucidation of various properties of the final blend, e.g., measurement of electrostatic charge by Faraday pail and evaluation of mutual influences of researched variables by partial least square (PLS) regression, were used. Using these methods, it was proved that the filler with higher particle size increased the content uniformity of both blends and the ensuing tablets. Addition of the lubricant, magnesium stearate, during the blending process improved the content uniformity of blends containing the filler with larger particles. This seems to be caused by reduced sampling error due to the suppression of electrostatic charge

    Functional divergence of microtubule-associated TPX2 family members in Arabidopsis thaliana

    Get PDF
    TPX2 (Targeting Protein for Xklp2) is an evolutionary conserved microtubule-associated protein important for microtubule nucleation and mitotic spindle assembly. The protein was described as an activator of the mitotic kinase Aurora A in humans and the Arabidopsis AURORA1 (AUR1) kinase. In contrast to animal genomes that encode only one TPX2 gene, higher plant genomes encode a family with several TPX2-LIKE gene members (TPXL). TPXL genes of Arabidopsis can be divided into two groups. Group A proteins (TPXL2, 3, 4, and 8) contain Aurora binding and TPX2_importin domains, while group B proteins (TPXL1, 5, 6, and 7) harbor an Xklp2 domain. Canonical TPX2 contains all the above-mentioned domains. We confirmed using in vitro kinase assays that the group A proteins contain a functional Aurora kinase binding domain. Transient expression of Arabidopsis TPX2-like proteins in Nicotiana benthamiana revealed preferential localization to microtubules and nuclei. Co-expression of AUR1 together with TPX2-like proteins changed the localization of AUR1, indicating that these proteins serve as targeting factors for Aurora kinases. Taken together, we visualize the various localizations of the TPX2-LIKE family in Arabidopsis as a proxy to their functional divergence and provide evidence of their role in the targeted regulation of AUR1 kinase activity

    Carmellose mucoadhesive oral films containing vermiculite/chlorhexidine nanocomposites as innovative biomaterials for treatment of oral infections

    Get PDF
    Infectious stomatitis represents the most common oral cavity ailments. Current therapy is insufficiently effective because of the short residence time of topical liquid or semisolid medical formulations. An innovative application form based on bioadhesive polymers featuring prolonged residence time on the oral mucosa may be a solution to this challenge. This formulation consists of a mucoadhesive oral film with incorporated nanocomposite biomaterial that is able to release the drug directly at the target area. This study describes the unique approach of preparing mucoadhesive oral films from carmellose with incorporating a nanotechnologically modified clay mineral intercalated with chlorhexidine. The multivariate data analysis was employed to evaluate the influence of the formulation and process variables on the properties of the medical preparation. This evaluation was complemented by testing the antimicrobial and antimycotic activity of prepared films with the aim of finding the most suitable composition for clinical application. Generally, the best results were obtained with sample containing 20 mg of chlorhexidine diacetate carried by vermiculite, with carmellose in the form of nonwoven textile in its structure. In addition to its promising physicomechanical, chemical, and mucoadhesive properties, the formulation inhibited the growth of Staphylococcus and Candida; the effect was prolonged for tens of hours.Web of Scienceart. no. 58014

    Person Detection for an Orthogonally Placed Monocular Camera

    Get PDF
    Counting of passengers entering and exiting means of transport is one of the basic functionalities of passenger flow monitoring systems. Exact numbers of passengers are important in areas such as public transport surveillance, passenger flow prediction, transport planning, and transport vehicle load monitoring. To allow mass utilization of passenger flow monitoring systems, their cost must be low. As the overall price is mainly given by prices of the used sensor and processing unit, we propose the utilization of a visible spectrum camera and data processing algorithms of low time complexity to ensure a low price of the final product. To guarantee the anonymity of passengers, we suggest orthogonal scanning of a scene. As the precision of the counting is relevantly influenced by the precision of passenger recognition, we focus on the development of an appropriate recognition method. We present two opposite approaches which can be used for the passenger recognition in means of transport with and without entrance steps, or with split level flooring. The first approach is the utilization of an appropriate convolutional neural network (ConvNet), which is currently the prevailing approach in computer vision. The second approach is the utilization of histograms of oriented gradients (HOG) features in combination with a support vector machine classifier. This approach is a representative of classical methods. We study both approaches in terms of practical applications, where real-time processing of data is one of the basic assumptions. Specifically, we examine classification performance and time complexity of the approaches for various topologies and settings, respectively. For this purpose, we form and make publicly available a large-scale, class-balanced dataset of labelled RGB images. We demonstrate that, compared to ConvNets, the HOG-based passenger recognition is more suitable for practical applications. For an appropriate setting, it defeats the ConvNets in terms of time complexity while keeping excellent classification performance. To allow verification of theoretical findings, we construct an engineering prototype of the system

    Epigenetic Distribution of Recombinant Plant Chromosome Fragments in a Human–Arabidopsis Hybrid Cell Line

    Get PDF
    Methylation systems have been conserved during the divergence of plants and animals, although they are regulated by different pathways and enzymes. However, studies on the interactions of the epigenomes among evolutionarily distant organisms are lacking. To address this, we studied the epigenetic modification and gene expression of plant chromosome fragments (~30 Mb) in a human–Arabidopsis hybrid cell line. The whole-genome bisulfite sequencing results demonstrated that recombinant Arabidopsis DNA could retain its plant CG methylation levels even without functional plant methyltransferases, indicating that plant DNA methylation states can be maintained even in a different genomic background. The differential methylation analysis showed that the Arabidopsis DNA was undermethylated in the centromeric region and repetitive elements. Several Arabidopsis genes were still expressed, whereas the expression patterns were not related to the gene function. We concluded that the plant DNA did not maintain the original plant epigenomic landscapes and was under the control of the human genome. This study showed how two diverging genomes can coexist and provided insights into epigenetic modifications and their impact on the regulation of gene expressions between plant and animal genomes

    Epigenetic Distribution of Recombinant Plant Chromosome Fragments in a Human–Arabidopsis Hybrid Cell Line

    Get PDF
    Methylation systems have been conserved during the divergence of plants and animals, although they are regulated by different pathways and enzymes. However, studies on the interactions of the epigenomes among evolutionarily distant organisms are lacking. To address this, we studied the epigenetic modification and gene expression of plant chromosome fragments (~30 Mb) in a human–Arabidopsis hybrid cell line. The whole-genome bisulfite sequencing results demonstrated that recombinant Arabidopsis DNA could retain its plant CG methylation levels even without functional plant methyltransferases, indicating that plant DNA methylation states can be maintained even in a different genomic background. The differential methylation analysis showed that the Arabidopsis DNA was undermethylated in the centromeric region and repetitive elements. Several Arabidopsis genes were still expressed, whereas the expression patterns were not related to the gene function. We concluded that the plant DNA did not maintain the original plant epigenomic landscapes and was under the control of the human genome. This study showed how two diverging genomes can coexist and provided insights into epigenetic modifications and their impact on the regulation of gene expressions between plant and animal genomes
    corecore