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Abstract 

In this article, a benchmark of algorithms for training of piecewise-linear artificial neural 

networks is introduced. At first, motivation of this article is described for a special topology of the 

neural network is used. This topology can be advantageously used in system control design, but it is 

difficult problem to train it. In this article, there is described a set of possible training algorithms, 

these algorithms are tested and evaluated. Benchmarking data are based on real problems. 

Abstrakt 

V článku je představen benchmark několika trénovacích algoritmů pro učení umělé neuronové 

sítě s po částech lineárními aktivačními funkcemi. V první části článku je představena použitá 

topologie neuronové sítě a její využití, dále jsou pak popsány možné algoritmy učení a tyto algoritmy 

jsou pak testovány a porovnány. K testování jsou použita data reálných procesů. 
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 1 INTRODUCTION 

An artificial neural network (ANN) is an adaptive mathematical structure that reorganizes and 

changes its structure based on external or internal information that flows through the network. 

Nowadays, it is especially used for modeling of complex nonlinear relationships between input and 

output datasets or decision making tools. The ANN is now widespread through plenty of scientific 

domains. The ANN models have been found useful and efficient, particularly in problems for which 

the characteristics of the processes are difficult to describe by physical equations. 

 2 MOTIVATION 

A special topology used for linearization of the nonlinear model exists for the ANN. This 

approach can be used for process control and detailed methodology is described in [1]. The topology 

itself is defined in following way: suppose feed-forward ANN with one hidden layer that can have 

only one neuron in the output layer. Besides, it has linear saturated activation functions in hidden 

layer and linear activation function in output layer (see Fig. 1). Once any nonlinear problem is 

modeled by this kind of network, it is possible to divide it into a set of linear subproblems where each 

of them can be solved by some effective algorithm. 
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However, the methodology does not have any recommendation about the machine-learning 

algorithms. Methodology only describes that approximation quality of the topology is given by 

quality of training. Therefore, the problem is in speed and performance of the machine-learning 

algorithm. The purpose of this contribution is to identify the fastest general purpose algorithm that 

can be used for training of the ANN with linear saturated activation functions in hidden layer. 
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Fig. 1 Typical structure of piecewise–linear neural network 

 3 ALGORITHMS 

For training of the ANN, the supervised machine-learning algorithms are selected because the 

input and output data are always known. Most of the machine-learning algorithms use some gradient-

based optimization technique. Thus, these algorithms require analytical derivative of the activation 

functions. The ANN topology uses the linear saturated activation functions in hidden layer due to 

piecewise-linear modeling. The linear saturated function is not differentiable at starting point of 

saturation so the derivative function is replaced in following tests by derivative function of hyperbolic 

tangent function because of their similar course. Brief information about selected benchmarked 

algorithms is below: 

 Levenberg–Marquardt (LM) – the algorithm that combines the advantages of gradient-

descent and Gauss-Newton methods. Algorithm is described in [2], [3] and in this 

implementation of the algorithm, there is is added Bayesian regularization to overcome the 

problem in interpolating noisy data [4]. 

 Scaled Conjugate Gradient (SCG) – the algorithm based on conjugate directions but it does 

not perform a line search at each iteration. For more details see [5]. 

 Resilient Propagation (RPROP) – the algorithm based only on change of the sign of the 

partial derivative over all patterns (not the magnitude), and it acts independently on each 

"weight". See [6], [7]. 

 Quick Propagation (QP) – the algorithm based loosely on Newton’s method but 

fundamentally it is more heuristic than formal. It makes two risky assumptions. At first, 

the error vs. weight curve for each weight can be approximated by a parabola whose arms 

are opened upward. At second, the slope change of the error curve, as seen by each weight, 

is not affected by all other weights which are changing at the same time. More in [8]. 
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 4 BENCHMARK 

For measuring performance, the Caliper was used (Caliper is Google's open-source framework 

for java). Framework handles a lot of inconveniences and inaccuracies. The main idea is to measure 

the speed of the training in time units. Training speed in time units depends on the speed of 

convergence, computational demands or other performance characteristics. For comparative reasons 

the algorithm that defines same rules for all measurements is constructed (see Fig. 2). 

start

end

read: trainingSet

read: validationSet

read: network

read: targetError

i = 0, replications

reset network

TM := create train method

TM add train reset strategy

epoch := 1

validatioError < targetError OR epoch > 30000 

YES NO

validationError := network.computeError(validationSet)

trainError < targetError

YES

process Train Iteration

trainError := network.computeError(trainingSet)

epoch := epoch + 1

NO

trainError = Infinity

NO

reset network

YES

 

Fig. 2 Algorithm in flowchart for measure function 

One of the most important parameters is target error. The target error determines escape 

condition for training. If calculated error from validation set is less than target error, the training will 

end. Measure algorithm uses important strategy (this strategy is not explicitly mentioned in flowchart, 

but it is a part of benchmarked function). If training error is not less than target error after 500 

iterations (this is coefficient in benchmark), network weights are reset to new values. This strategy 

helps to set the appropriate initial values of weights and helps to speed up training. 

In flowchart, there is some operation that needs an explanation. The operation “reset network” 

means resetting the weight matrix and the bias values by Nguyen – Widrow randomizer [9]. Input 

parameters for measure are training and validation data, network, targeted error and number of 

replications. 

The standard Mean Square Error (MSE) is used to determine error (1). 
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where:  

MSE – mean square error, 
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ii  – expected value, 

ai  – actual value, 

n  – number of outputs, 

i  – index of output value. 

 5 BENCHMARK DATA SETS 

Most contributions present the performance results of the algorithms only for a very small 

number of problems. In most cases, less than three problems are presented and one or several of these 

problems are meaningless synthetic problems. One of the reasons could be that it is difficult to get 

data for real problems. For this paper a subset of benchmark problems from Proben1is used. The 

Proben1 is a set of standard datasets for the ANN evaluation based on real problems. Brief 

explanation of chosen datasets is below: 

 Cancer (classification problem) – Diagnosis of breast cancer. Try to classify a tumor as 

either benign or malignant based on cell descriptions gathered by microscopic 

examination. 

 Glass (classification problem) – Classify glass types. The results of a chemical analysis of 

glass splinters (percent content of 8 different elements) plus the refractive index are used to 

classify the sample to be either float processed or non float processed building windows, 

vehicle windows, containers, tableware, or head lamps. 

 Heart (classification problem) – Predict heart disease. Decide whether at least one of four 

major vessels is reduced in diameter by more than 50%. The binary decision is made based 

on personal data such as age, sex, smoking habits, subjective patient pain descriptions, and 

results of various medical examinations such as blood pressure and electro cardiogram 

results. 

 Thyroid (classification problem) – Diagnose thyroid hyper- or hypofunction. Based on 

patient query data and patient examination data, the task is to decide whether the patient's 

thyroid has overfunction, normal function, or underfunction. 

 Flare (approximation problem) – Prediction of solar flares. Try to guess the number of 

solar flares of small, medium, and large size that will happen during the next 24-hour 

period in a fixed active region of the sun surface. Input values describe previous activity 

and the type and history of the active region. 

The topology requires only one neuron in output layer. Some datasets have more than one 

output. In these cases outputs are transformed to only one value by (2). 
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where:  

output  – output layer value, 

ideali  – output ideal value, 

n  – number of ideals outputs, 

i  – index of ideal output. 

Where n is the number of ideal outputs and ideal is the appropriate dataset output. For each 

input values normalization to interval <–1, 1> is used. For more detailed information about datasets 

see [10]. 
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 6 RESULTS 

Each experiment is usually measured in 7 trials and if needed for required standard deviation 

accuracy 5 more trials can be additionally measured. The threshold of standard deviation is at least 

one digit place lower than measured result. The trials are executed with replication parameter. The 

number of replications changes from 500 to 1000 and it depends on the speed of executed code in 

benchmark function. 

All results are introduced in Tab 1 and they are presented in milliseconds. All results are 

measured on computer with this hardware configuration: Intel Core i5 2.53GHz, 4GB RAM, 

Windows 7 x64 and model: Acer Aspire 5820TG. 

Some train methods converge slowly, therefore values above the threshold of 2000 

milliseconds are rather approximate to real values for they cannot be measured with required 

accuracy because of time and performance issues. This problem appears especially in HEART and 

THYROID datasets. 

Tab. 1 Benchmark results 

Parameters Results [ms] 

Dataset Target Error RPROP QP SCG LM 

CANCER 

0,15 2,42 2,08 40,7 539.0 

0,10 2,89 2,47 64,7 628.0 

0,05 3,95 3,39 91,4 889,2 

GLASS 

0,15 0,84 0,47 0,80 196,0 

0,10 0,92 0,46 15,46 297,9 

0,05 1,35 1,30 27,8 805,7 

FLARE 

0,15 4,34 1,18 3,02 2094 

0,10 5,38 1,18 3,13 2036 

0,05 7,79 1,41 3,7 2016,7 

THYROID 

0,15 39,78 78,59 2866,3 3128,1 

0,10 42,04 89,29 2830,7 3342,1 

0,05 63,83 79,75 4427,1 83617 

HEART 

0,15 15,65 10722 18,6 103788 

0,10 22,67 19586 2055,1 206405 

0,05 42,97 57324 8716,4 186146 

QP has best results in three types of datasets (cancer, glass, flare). On the other hand, it has 

notably bad results in heart dataset. If we consider that the Rprop is nearly as fast as QP and faster in 

results from heart and thyroid, it could be considered as the best general purpose algorithm. Rprop 

requires less adjustment of parameters than QP and hence Rprop is more stable than QP. 

 7 CONCLUSIONS 

The article is focused on indentifying the best machine-learning algorithms for feed forward 

artificial neural network with linear saturated activation functions in hidden layer. Benchmark’s 

results prove and show that the best training method for this type of the ANN’s topology is the Quick 

Propagation but it is not applicable for all types of datasets. The best general purpose training method 

seems to be the Resilient Propagation. In addition, the benchmark shows that normally efficient LM 

algorithm is computationally more demanding than others. In benchmark comparison, the LM is 

significantly slower than training algorithms preferred by this contribution. 
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