657 research outputs found

    Impact of co-morbid burden on mortality in patients with coronary heart disease, heart failure, and cerebrovascular accident: a systematic review and meta-analysis.

    Get PDF
    Aims: We sought to investigate the prognostic impact of co-morbid burden as defined by the Charlson Co-morbidity Index (CCI) in patients with a range of prevalent cardiovascular diseases. Methods and results: We searched MEDLINE and EMBASE to identify studies that evaluated the impact of CCI on mortality in patients with cardiovascular disease. A random-effects meta-analysis was undertaken to evaluate the impact of CCI on mortality in patients with coronary heart disease (CHD), heart failure (HF), and cerebrovascular accident (CVA). A total of 11 studies of acute coronary syndrome (ACS), 2 stable coronary disease, 5 percutaneous coronary intervention (PCI), 13 HF, and 4 CVA met the inclusion criteria. An increase in CCI score per point was significantly associated with a greater risk of mortality in patients with ACS [pooled relative risk ratio (RR) 1.33; 95% CI 1.15-1.54], PCI (RR 1.21; 95% CI 1.12-1.31), stable coronary artery disease (RR 1.38; 95% CI 1.29-1.48), and HF (RR 1.21; 95% CI 1.13-1.29), but not CVA. A CCI score of >2 significantly increased the risk of mortality in ACS (RR 2.52; 95% CI 1.58-4.04), PCI (RR 3.36; 95% CI 2.14-5.29), HF (RR 1.76; 95% CI 1.65-1.87), and CVA (RR 3.80; 95% CI 1.20-12.01). Conclusion: Increasing co-morbid burden as defined by CCI is associated with a significant increase in risk of mortality in patients with underlying CHD, HF, and CVA. CCI provides a simple way of predicting adverse outcomes in patients with cardiovascular disease and should be incorporated into decision-making processes when counselling patients

    Lung tumors with distinct p53 mutations respond similarly to p53 targeted therapy but exhibit genotype-specific statin sensitivity

    Get PDF
    Lung adenocarcinoma accounts for ∼40% of lung cancers, the leading cause of cancer-related death worldwide, and current therapies provide only limited survival benefit. Approximately half of lung adenocarcinomas harbor mutations in TP53 (p53), making these mutants appealing targets for lung cancer therapy. As mutant p53 remains untargetable, mutant p53-dependent phenotypes represent alternative targeting opportunities, but the prevalence and therapeutic relevance of such effects (gain of function and dominant-negative activity) in lung adenocarcinoma are unclear. Through transcriptional and functional analysis of murine Kras(G12D) -p53(null) , -p53(R172H) (conformational), and -p53(R270H) (contact) mutant lung tumors, we identified genotype-independent and genotype-dependent therapeutic sensitivities. Unexpectedly, we found that wild-type p53 exerts a dominant tumor-suppressive effect on mutant tumors, as all genotypes were similarly sensitive to its restoration in vivo. These data show that the potential of p53 targeted therapies is comparable across all p53-deficient genotypes and may explain the high incidence of p53 loss of heterozygosity in mutant tumors. In contrast, mutant p53 gain of function and their associated vulnerabilities can vary according to mutation type. Notably, we identified a p53(R270H) -specific sensitivity to simvastatin in lung tumors, and the transcriptional signature that underlies this sensitivity was also present in human lung tumors, indicating that this therapeutic approach may be clinically relevant.This work was supported by the Medical Research Council

    Analysis of a Web-Based Dashboard to Support the Use of National Audit Data in Quality Improvement: Realist Evaluation.

    Get PDF
    BACKGROUND: Dashboards can support data-driven quality improvements in health care. They visualize data in ways intended to ease cognitive load and support data comprehension, but how they are best integrated into working practices needs further investigation. OBJECTIVE: This paper reports the findings of a realist evaluation of a web-based quality dashboard (QualDash) developed to support the use of national audit data in quality improvement. METHODS: QualDash was co-designed with data users and installed in 8 clinical services (3 pediatric intensive care units and 5 cardiology services) across 5 health care organizations (sites A-E) in England between July and December 2019. Champions were identified to support adoption. Data to evaluate QualDash were collected between July 2019 and August 2021 and consisted of 148.5 hours of observations including hospital wards and clinical governance meetings, log files that captured the extent of use of QualDash over 12 months, and a questionnaire designed to assess the dashboard's perceived usefulness and ease of use. Guided by the principles of realist evaluation, data were analyzed to understand how, why, and in what circumstances QualDash supported the use of national audit data in quality improvement. RESULTS: The observations revealed that variation across sites in the amount and type of resources available to support data use, alongside staff interactions with QualDash, shaped its use and impact. Sites resourced with skilled audit support staff and established reporting systems (sites A and C) continued to use existing processes to report data. A number of constraints influenced use of QualDash in these sites including that some dashboard metrics were not configured in line with user expectations and staff were not fully aware how QualDash could be used to facilitate their work. In less well-resourced services, QualDash automated parts of their reporting process, streamlining the work of audit support staff (site B), and, in some cases, highlighted issues with data completeness that the service worked to address (site E). Questionnaire responses received from 23 participants indicated that QualDash was perceived as useful and easy to use despite its variable use in practice. CONCLUSIONS: Web-based dashboards have the potential to support data-driven improvement, providing access to visualizations that can help users address key questions about care quality. Findings from this study point to ways in which dashboard design might be improved to optimize use and impact in different contexts; this includes using data meaningful to stakeholders in the co-design process and actively engaging staff knowledgeable about current data use and routines in the scrutiny of the dashboard metrics and functions. In addition, consideration should be given to the processes of data collection and upload that underpin the quality of the data visualized and consequently its potential to stimulate quality improvement. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR2-10.1136/bmjopen-2019-033208

    Significance of Elevated Blood Metal Ion Levels in Patients with Metal-on-Metal Prostheses: An Evaluation of Oxidative Stress Markers

    Get PDF
    It is widely known that cobalt and chromium ions can enhance the production of reactive oxygen species, known to be damaging to cells by disturbing their redox status and then generating oxidative stress. The aim of the present study was to determine if increased metal ion levels induce a state of oxidative stress in patients with metal-on-metal (MM) hip arthroplasty. Results indicated that there was no significant difference in the concentration of oxidative stress markers (total antioxidants, peroxides, and nitrated proteins) in the patients with MM bearings compared to patients without prostheses. The activity antioxidant enzymes was stable (catalase and glutathione peroxidase) or slightly decreased (superoxide dismutase and heme oxygenase-1) over time. This work is the first to determine the biological effects of metal ions released from MM hip implants with regards to mid-term systemic oxidative stress and showed that the increased levels of Co and Cr ions are not associated with significant oxidative stress damage in the plasma of patients with these implants

    Model-Derived Dispersal Pathways from Multiple Source Populations Explain Variability of Invertebrate Larval Supply

    Get PDF
    Background: Predicting the spatial and temporal patterns of marine larval dispersal and supply is a challenging task due to the small size of the larvae and the variability of oceanographic processes. Addressing this problem requires the use of novel approaches capable of capturing the inherent variability in the mechanisms involved. Methodology/Principal Findings: In this study we test whether dispersal and connectivity patterns generated from a biophysical model of larval dispersal of the crab Carcinus maenas, along the west coast of the Iberian Peninsula, can predict the highly variable daily pattern of wind-driven larval supply to an estuary observed during the peak reproductive season (March–June) in 2006 and 2007. Cross-correlations between observed and predicted supply were significant (p,0.05) and strong, ranging from 0.34 to 0.81 at time lags of 26 to+5 d. Importantly, the model correctly predicted observed cross-shelf distributions (Pearson r = 0.82, p,0.001, and r = 0.79, p,0.01, in 2006 and 2007) and indicated that all supply events were comprised of larvae that had been retained within the inner shelf; larvae transported to the outer shelf and beyond never recruited. Estimated average dispersal distances ranged from 57 to 198 km and were only marginally affected by mortality. Conclusions/Significance: The high degree of predicted demographic connectivity over relatively large geographic scales is consistent with the lack of genetic structuring in C. maenas along the Iberian Peninsula. These findings indicate that the dynamic nature of larval dispersal can be captured by mechanistic biophysical models, which can be used to provid

    Interactions of malnutrition and immune impairment, with specific reference to immunity against parasites

    Get PDF
    KEY POINTS: 1. Clinical malnutrition is a heterogenous group of disorders including macronutrient deficiencies leading to body cell mass depletion and micronutrient deficiencies, and these often coexist with infectious and inflammatory processes and environmental problems. 2. There is good evidence that specific micronutrients influence immunity, particularly zinc and vitamin A. Iron may have both beneficial and deleterious effects depending on circumstances. 3. There is surprisingly slender good evidence that immunity to parasites is dependent on macronutrient intake or body composition

    Association Analysis of the Extended MHC Region in Celiac Disease Implicates Multiple Independent Susceptibility Loci

    Get PDF
    Celiac disease is a common autoimmune disease caused by sensitivity to the dietary protein gluten. Forty loci have been implicated in the disease. All disease loci have been characterized as low-penetrance, with the exception of the high-risk genotypes in the HLA-DQA1 and HLA-DQB1 genes, which are necessary but not sufficient to cause the disease. The very strong effects from the known HLA loci and the genetically complex nature of the major histocompatibility complex (MHC) have precluded a thorough investigation of the region. The purpose of this study was to test the hypothesis that additional celiac disease loci exist within the extended MHC (xMHC). A set of 1898 SNPs was analyzed for association across the 7.6 Mb xMHC region in 1668 confirmed celiac disease cases and 517 unaffected controls. Conditional recursive partitioning was used to create an informative indicator of the known HLA-DQA1 and HLA-DQB1 high-risk genotypes that was included in the association analysis to account for their effects. A linkage disequilibrium-based grouping procedure was utilized to estimate the number of independent celiac disease loci present in the xMHC after accounting for the known effects. There was significant statistical evidence for four new independent celiac disease loci within the classic MHC region. This study is the first comprehensive association analysis of the xMHC in celiac disease that specifically accounts for the known HLA disease genotypes and the genetic complexity of the region

    Tensor Decomposition Reveals Concurrent Evolutionary Convergences and Divergences and Correlations with Structural Motifs in Ribosomal RNA

    Get PDF
    Evolutionary relationships among organisms are commonly described by using a hierarchy derived from comparisons of ribosomal RNA (rRNA) sequences. We propose that even on the level of a single rRNA molecule, an organism's evolution is composed of multiple pathways due to concurrent forces that act independently upon different rRNA degrees of freedom. Relationships among organisms are then compositions of coexisting pathway-dependent similarities and dissimilarities, which cannot be described by a single hierarchy. We computationally test this hypothesis in comparative analyses of 16S and 23S rRNA sequence alignments by using a tensor decomposition, i.e., a framework for modeling composite data. Each alignment is encoded in a cuboid, i.e., a third-order tensor, where nucleotides, positions and organisms, each represent a degree of freedom. A tensor mode-1 higher-order singular value decomposition (HOSVD) is formulated such that it separates each cuboid into combinations of patterns of nucleotide frequency variation across organisms and positions, i.e., “eigenpositions” and corresponding nucleotide-specific segments of “eigenorganisms,” respectively, independent of a-priori knowledge of the taxonomic groups or rRNA structures. We find, in support of our hypothesis that, first, the significant eigenpositions reveal multiple similarities and dissimilarities among the taxonomic groups. Second, the corresponding eigenorganisms identify insertions or deletions of nucleotides exclusively conserved within the corresponding groups, that map out entire substructures and are enriched in adenosines, unpaired in the rRNA secondary structure, that participate in tertiary structure interactions. This demonstrates that structural motifs involved in rRNA folding and function are evolutionary degrees of freedom. Third, two previously unknown coexisting subgenic relationships between Microsporidia and Archaea are revealed in both the 16S and 23S rRNA alignments, a convergence and a divergence, conferred by insertions and deletions of these motifs, which cannot be described by a single hierarchy. This shows that mode-1 HOSVD modeling of rRNA alignments might be used to computationally predict evolutionary mechanisms
    corecore