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THE PURPOSE of this communication is to describe a 
recently delineated principle of immunology1 that can 

be summarized in one line: immunity, or alternatively 
tolerance, to any antigen is governed by the migration and 
localization of that antigen. This concept, which has been 
developed with transplantation models2- 4 and from obser­
vations after clinical and experimental infe£tions5- 7 has 
been described elsewhere in more detai1.1 Here, we will be 
concerned mainly with the relation between donor leuko­
cyte chimerism and transplantation tolerance, focusing at 
first on clinicopathologic observations in transplant recipi­
ents made in 1991-1992 that prompted reconsideration of a 
number of long held convictions. 

HISTORICAL CLUES IN TRANSPLANTATION 

The most important new finding reported in 1992 was the 
presence of multiline age donor leukocyte microchimerism 
in the blood, skin, lymph nodes, and other tissues of organ 
allograft recipients up to 30 years after successful transplan­
tation.2- 4 The persistence of the disseminated donor leu­
kocytes for this long implied ( as was subsequently 
proved8•9) that precursor or stem cells are included in the 
burst of donor leukocytes that briefly constitute 1 % to 20% 
of the recipient circulating mononuclear cells after organ 
transplantation (Fig 1, upper panel). Although the number 
of these donor cells is greatest with transplantation of the 
intestine or liver,10,11 the same events on a smaller scale 
occur after transplantation of organs like the kidney and 
heart. 12 

Another change during the early postoperative period is 
disappearance of the resident donor mononuclear leuko­
cytes from the graft and their replacement by recipient cells 
of the same lineages (Fig 1, lower). Although this was 
observed in hepatic allografts nearly 30 years ago,13 it was 
assumed at first to be a unique feature of liver transplants. 
After the same changes were found in intestinal allo­
grafts,11,14 evidence quickly accrued that this was a generic 
phenomenon; ie, it occurred in all successfully transplanted 
organs.3,15 

These discoveries, showing that both the "accepted" 
allograft and recipient became genetic composites, sug­
gested an explanation for two enigmatic observations re­
ported for the first time in 196316 that had allowed the 
development of organ transplantation as a practical and 
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reproducible clinical service. First, kidney rejection devel­
oping in patients immunosuppressed with azathioprine 
could be consistently reversed with large doses of pred­
nisone. The second, and more important, observation was 
that renal allografts self-induced variable degrees of donor­
specific tolerance, manifested by the subsequent ability to 
reduce immunosuppression to below doses that had been 
unable to prevent or control rejection at the outset. 16 It was 
obvious that a host-versus-graft (HVG) immune reaction 
gathered strength at first despite anti-rejection therapy, but 
then collapsed with temporarily intensified immunosup­
pression. The same events were soon documented after 
liver transplantation17,18 and eventually~~h all other kinds 
of organ allografts. They can be observed in many animal 
models without the need for immunosuppression (summa­
rized in Starzl et aI4), most commonly when the liver is the 
transplanted organ. 19 

THE HISTORICAL BRIDGE TO INFECTION 

Early workers in transplantation recognized the resem­
blance of allograft rejection to the response against infec­
tions associated with delayed hypersensitivity, as exempli­
fied by tuberculosis.2o,21 With the demonstration of the 
MHC-restricted mechanisms of adaptive infectious immu­
nity in 1973,22-25 it seemed obvious that allograft rejection 
must be the physiologic equivalent of the response to this 
kind of infection. Microorganisms that generate such an 
adaptive immune response are generally intracellular, and 
have no or low cytopathic qualities. Although MHC-re­
stricted host cytolytic T lymphocytes recognize only infected 
cells, elimination of all the infected cells could disable or 
even kill the host. Consequently, mechanisms have evolved 
that can temper or terminate the immune response, allow­
ing both host and pathogen to survive.5- 7 
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Fig 1. The dynamic events after transplantation of all organs, 
exemplified by intestinal engraftment. Upper panel. The surge of 
migratory donor mononuclear leukocytes in the recipient blood 
during the first 2 or 3 weeks posttransplantation. Lower panel. The 
contemporaneous disappearance of the passenger leukocytes 
from the allograft; these are replaced by recipient cells of the 
same lineages (schematically redrawn from data in Iwaki et al"). 

The highly variable clinical manifestations of these mech­
anisms can be illustrated by the different outcomes that may 
follow an infection with disseminated non-cytopathic micro­
organisms (eg, the common hepatitis viruses). In one 
scenario, th~ .. pathogen (antigen) load may rapidly increase 
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during the so-called latent period, but then be dramatically 
and efficiently reduced by antigen-specific effector T-cells. 
Following control of the infection, the cytotoxic T lympho­
cytes (CTL) subside (Fig 2, left panel). The events are 
similar to those of irreversible organ rej ection in the 
unmodified or ineffectively treated recipient (Fig 2, sub­
script to left panel). Alternatively, however, such infections 
may lead to a continuously high antigen load and an antigen 
specific immunologic collapse (Fig 2, second panel). The 
consequent asymptomatic carrier state is equivalent to 
unqualified acceptance of an allograft. This kind of result, 
including independence from immunosuppression, is rarely 
achieved by organ recipients and is usually associated with 
good HLA compatibility. 

Between these two extremes of protective immunity and 
a carrier state, a persistent infectious agent may induce an 
unrelenting immune response that results in serious immu­
nopathology (eg, chronic active hepatitis with a Bore virus 
infection). This is equivalent to chronic rejection after liver 
transplantation (Fig 2, right), or uncommonly graft-versus­
host disease (GVHD; see later). The result as a practical 
matter in the overwhelming majority of organ recipients is 
chronic rejection which may range from aggressive to 
indolent, despite the best immunosuppression available 
today. 

TOLERANCE: THE BIOLOGIC SAFETY VALVE 

Under both infectious and transplant circumstances, only 
two mechanisms are needed to explain the compromise 
outcomes shown in the second and third panels of Fig 2 
which allow co-existence of live antigen and the host. One is 
clonal exhaustion leading to clonal deletion. The other is 
immune indifference. Although these two mechanisms will 
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Fig 2. Variable outcomes after infection with widely disseminated non-cytopathic viruses (or other microorganisms) and analogies (in 
the subscripts) to organ and bone marrow transplantation. The horizontal axis denotes time, and the vertical axis shows the viral load 
(v, solid line), and the host immune response (IR, dashed line). 
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Fig 3. Hypothesis published in 1969 of allograft acceptance by 
clonal exhaustion. Antigen presentation was depicted via the 
macrophages rather than by the dendritic cells (which had not 
yet been described). A gap in this hypothesis was the failure to 
stipulate the location of the immune activation (by permission of 
W.B. Saunders CO.28). 

be considered separately, they tend to be mutually reinforc­
ing. Both are regulated by antigen migration and localiza­
tion. 

Clonal Exhaustion/Deletion 

The exhaustion and deletion of an antigen specific clone 
was postulated as early as 1959-1960 to explain the acqui­
sition of tolerance in animal models to heterologous protein 
(with the aid of 6-mercaptopurine,Z6) and to allogeneic 
splenocytes (without the need for immunosuppressionZ7). 

Clonal exhaustion also was invoked at an early time to 
explain organ allograft acceptance,28.29 as shown in the 
illustration and caption reproduced in Fig 3. In this figure, 
which was first published in 1969, induction of the activated 
clone by alloantigen was depicted via host macrophages 
rather than by dendritic cells which would not be described 
until 4 years later. 30 

The Eclipse of Clonal Exhaustion. Despite circumstantial 
evidence of its existence as a tolerogenic mechanism (sum­
marized in Steinman and Cohn31 and Sterzl and Silver­
stein32), clonal exhaustion disappeared from the literature 
between 1970 and 1990, ostensibly because it was only a 
theory. Since 1990, however, clonal exhaustion/deletion has 
been formally demonstrated in many infectious, transplan­
tation, and other models.33-38 A sub population of T cells is 
induced by the antigen within a few days, end-differentiates 
to effector cells, and disappears. 

Death of the activated cells by apoptosis has been 
demonstrated in a mouse transplantation model?7 possibly 
due to interleukin deprivation, and associated with tele­
mere shortening.39 Although clonal exhaustion is the most 
efficient way to eliminate maturing self-reactive T cells in 
ontogeny and throughout the life of many higher verte­
brates, purging of T cells (and also apparently B cells) also 
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occurs in the peripheral lymphoid organs. The peripheral 
sites may be the principal site of clonal deletion after 
successful transplantation in humans.4 

Alternative Tolerogenic Mechanisms. Although lack of 
proof contributed to the dismissive reception of clonal 
exhaustion, a more pervasive factor in the context of 
transplantation immunology was a lack of understanding 
about the role of the organ's "passenger leukocytes." These 
donor cells of bone marrow origin have been known for 
more than three decades to be the principal immunogenic 
component of allografts.40,41 Because they disappear from 
successfully transplanted organs,11.14,15,40-43 it was as­
sumed until recently that they had been selectively de­
stroyed by the recipient immune system, with selective 
sparing of the specialized parenchymal cells. 

As a corollary, organ allograft acceptance was assumed to 
take place by fundamentally different mechanisms than the 
chimerism-dependent acquired neonatal tolerance of Bill­
ingham, Brent, and Medawar.44 Proposed chimerism-exclu­
sionary mechanisms have included suppressor, veto, and 
other immune regulatory cells; cytokine profile changes; 
various antibodies; and failure of delivery of a second 
(costimulatory) signal following primary antigen presenta­
tion. Contrary to these hypOYleses, the discovery of micro­
chimerism in organ recipients made it possible, in 1992, to 
explain allograft acceptance by" ... [widespread] responses 
of co-existing donor and recipient immune cells, each to the 
other, causing reciprocal clonal expansion, followed by 
peripheral clonal deletion."z 

The Double Immune Reaction. This feature distinguishes 
the allograft response from the single immune reaction 
induced by an infection. 1 If some degree of reciprocal 
clonal exhaustion is not induced and maintained (requiring 
an umbrella of immune suppression in humans), one cell 
population usually will destroy the other, or both may be 
destroyed together. Following organ transplantation, the 
dominant host system usually rejects the graft (Fig 4). 
However, serious or lethal GVHD is not rare after trans­
plantation of leukocyte-rich organs such as the liver? 

In contrast, the recipient cyto-ablation used in prepara­
tion for bone marrow transplantation transfers dominance 
to the donor system (Fig 5). Consequently, GVHD is the 
most common complication in bone marrow recipients, but 
the graft may be rejected instead, or simultaneously. 

The Governance of Clonal Exhaustion. Migration of 
spreading non-cytopathic microorganisms to host lymphoid 
organs, and localization there, are well known to be critical in 
initiating and sustaining protective immune activation.5-7,45 

The similar lymphoid-oriented traffic of passenger leuko­
cytes4o - 48 is equally acknowledged to be the essential basis 
of host allosensitization. Carried one step further to clonal 
exhaustion, it also is the means by which specific immuno­
logic tolerance is induced. 

Immune Indifference 

Although clonal exhaustion/deletion is the seminal mecha­
nism of tolerance, survival of either allo- or infectious 
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Fig 4. Organ transplantation, seen as a bidirectional and mu­
tually canceling immune reaction that is predominantly host 
versus graft in most cases. 

antigen may be promoted by a second nontolerogenic 
mechanism, called "immune indifference."s.7 Like clonal 
exhaustion, immune indifference is controlled by antigen 
migration and localization. 

Primary. Pure examples of de novo immune indifference 
are provided by the rabies and wart viruses which elicit little 
or no immune response (Fig 6), simply by avoiding migra­
tion through, or to, host lymphoid organs. This has been 
mimicked in numerous transplant models by depletion of 
donor leukocytes from allografts. Graft survival is thereby 
prolonged (subscript of Fig 6). However, tolerance is not 
induced, as shown by the fact that rejection can be readily 
precipitated with an injection of donor leukocytes.41,49,so 
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Fig 5. Bone marrow transplantation. Because the recipient is 
cytoablated. the immune reaction is predominantly graft vs. 
host, resulting in a mirror image of that shown in Fig 4. 
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Fig 6. Immune indifference when an infectious agent does not 
migrate through or to an organized lymphoid collection, Trans­
plantation analogs are shown in the subscript. The horizontal 
and vertical axes are as in Fig 2. Note the minimal or absent host 
immune response (IR, dashed line). 

Secondary. Pristine examples of immune indifference are 
not seen in the usual setting of clinical organ transplanta­
tion. Nevertheless, immune indifference can evolve second­
arily. As also occurs with microorganisms following a 
widespread noncytopathic infection,7,sl migratory donor 
leukocytes that have not been eliminated by passage 
through lymphoid organs may leave the lymphoid compart­
ment, having induced various stages of incomplete and/or 
reversible antigen specific exhaustion. In experimental or­
gan transplant models, this begins after about 2 weeks, and 
by 100 days, the most prominent donor leukocyte popula­
tion ·has ~hifted from lymphoid sites to nonlymphoid sites 
(eg, skin and heart).s2 Maintenance clonal exhaustion ap­
parently occurs subsequently by leakage of donor leuko­
cytes from the non-lymphoid to the lymphoid compartment 
(Fig 7). 

The balance that develops between destructive and non­
destructive immunity as the result of lymphoid/non-lym­
phoid leakage has been difficult to quantitate in transplan­
tation models. However, a stable equilibrium has been 
demonstrated by Ohashi, Zinkernagel, et al in transgenic 
mouse preparations.53.54 In these models, pancreatic islets 
expressing viral antigens are not destroyed by low level CTL 
activity, but are rejected with resulting diabetes by the 
induction of high virus-specific reactivity. 

• 
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Fig 7. Reconstruction of events after organ transplantation, 
epitomized by the heart with its "passenger leukocyte" compo­
nent depicted as a bone silhouette. Most, but not ali, of the 
donor leukocytes leave the graft and are largely replaced by 
recipient celis of the same lineages. The early migration of the 
donor leukocytes is oriented to the host lymphoid organs, but by 
100 days, the surviving donor cells have largely relocated to the 
non-lymphoid tissues (here shown as skin and native heart). 
Subsequent leakage between the lymphoid and non-lymphoid 
compartments is thought to maintain clonal exhaustion (see text). 

In a further exploitation of similar transgenic models, 
Ehl, Zinkernagel et al have shown the essential role of 
antigen persistence in the maintenance of tolerance.55 

Tolerance to transgenic skin grafts expressing the viral 
antigen (gp33) of the lymphocytic choriomeningitis virus 
could be induced by pretreatment of recipients with gp33 
but it could not be maintained by the gp33 expressed by 
outlying skin graft. In contrast, tolerization with gp33-
expressing, mobile, and self-renewing spleen cells (ie, donor 
splenocyte chimerism) permanently protected the trans­
genic skin. By analogy, the disappearance of microchimer­
ism in an organ recipient presages loss of the outlying graft 
to chronic or acute rejection.56,57 In the model of Ehl et 
al,55 this was associated with thymus dependent recovery of 
precursor CTL. 

THE COLLABORATION OF CLONAL EXHAUSTION AND 
IMMUNE INDIFFERENCE 

With clonal exhaustion and immune indifference in combi­
nation, both regulated by the migration and localization of 
antigen, the four inter-related events shown schematically 
in Fig 8 must occur close together if organ transplantation 
is to succeed: double acute clonal exhaustion, maintenance 
clonal exhaustion which waxes and wanes, and loss of graft 
immunogenicity as the organ is depleted of its passenger 
leukocytes. 

The significance of the microchimerism observed at the 
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Fig 8. The four events that occur in close temporal approxima­
tion when there is successful organ engraftment: above, double 
acute clonal exhaustion 1.2 and subsequent mainteoance clonal 
exhaustion3 plus, below, loss of organ immunogenicity due to 
depletion of the graft's passenger leukocytes.4 
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end of this process has been questioned (summarized in Wood 
and Sachs58) because, as we also have emphasized,2-4.59 donor 
leukocytes may be detectable during rejection, and are often 
not detectable in individual blood or tissue samples in 
patients bearing stable allografts. These observations are 
readily fitted into the concept that" ... Donor leukocyte 
chimerism is a prerequisite for but not synonymous with and 
not a consequence of, organ allograft acceptance."l This 
conclusion applies equally to macro and microchimerism. 

BONE MARROW VERSUS ORGAN TRANSPLANTATION 

Conventional bone marrow transplantation (Fig 5) is only a 
mirror image of the events after organ transplantation (Fig 
4), with the same governance of the immune events by 
antigen migration and localization. Although pre transplant 
cyto-ablation renders the recipient subject to GVHD, the 
host leukocytes are not all eliminated.60 The weak host­
versus-graft reaction mounted by the remaining recipient 
cells, and the parallel GVH reaction of the donor cells can 
eventually result in reciprocal tolerance. 

SELF/NON-SELF DISCRIMINATION 

Because the fetus possesses very early T cell immune 
function,31,61,62 the ontogeny of self/non-self discrimination 
during fetal development can be explained by the same 
mechanisms as acquired tolerance in later life. Autoim­
mune diseases then reflect unacceptable post-natal pertur­
bations of the prenatally established localization of self 
antigens. in non-lymphoid versus lymphoid compartments. 

XENOTRANSPLANTATION 

There is no MHC-restricted safety valve for cytopathic 
microorganisms which are typically extracellular and gen­
erate the full resources of the innate as well as the adaptive 
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Table 1. Effectors Involved in Response to Cytopathic 
Parasites and Discordant Xenografts 

The First Line of Defense 

Interferons 
Macrophages 
y/& T celis 
Natural killer (NK) cells 
B celis 

Non-Specific or Less Specific Effectors 

Complement 
Early interleukins 
Phagocytes 

immune system.l,s An uncontrollable innate immune re­
sponse involving the effectors shown in Table 1 is provoked 
by discordant xenografts expressing the Gal-a Gal epitope, 
an epitope which also is found on numerous cytopathic 
bacteria, protozoa, and viruses. The clinical uSe of such 
discordant animal donors will require changing the xenoge­
neic epitope to one that mimics a non-cytopathic profile, or 
else elimination of the xenogeneic epitope. l 
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