1,121 research outputs found

    MEPS Workload Balance and Capacity Rationalization

    Get PDF
    Prepared for: U.S. Military Entrance Processing Command (USMEPCOM) 2834 Green Bay Road North Chicago, IL 60064-3091The U.S. Military Entrance Processing Command (USMEPCOM) is charged with screening all applicants for enlistment into the U.S. Armed Forces according to the qualification standards of each of the four services. These applicants are screened and processed at one of 65 Military Entrance Processing Stations (MEPS) distributed throughout the United States, to include Alaska, Hawaii, and Puerto Rico. Archived data exists that describes the daily work each site has experienced in the broad categories such of medical, testing, and processing. The workload between stations can vary widely, as certain sites serve areas with denser populations of applicants. The workload at each station also tends to vary according to time of year, as well as time of month. This workload variability at and between MEPS presents unique challenges for deciding on optimal capacity levels. We develop a short list of candidate locations that exhibit particularly high congestion relative to other MEPS and regions. Namely, 7th Battalion in California and 10th Battalion in Florida each contain several MEPS that rank highly with respect to relative congestion. Another regional area with substantial relative congestion includes MEPS from 4th and 12 Battalions. Finally, individual MEPS such an Minneapolis and Columbus exhibit consistent high relative congestion in the medical technician workflow, while Denver and Montgomery exhibit high congestion in the human resources workflow.U.S. Military Entrance Procession Command (2USMEPCOM) 834 Green Bay Road, North Chicago, IL 60064-3091Approved for public release; distribution is unlimited

    The photospheric solar oxygen project: III. Investigation of the centre-to-limb variation of the 630nm [OI]-NiI blend

    Full text link
    The solar photospheric abundance of oxygen is still a matter of debate. For about ten years some determinations have favoured a low oxygen abundance which is at variance with the value inferred by helioseismology. Among the oxygen abundance indicators, the forbidden line at 630nm has often been considered the most reliable even though it is blended with a NiI line. In Papers I and Paper II of this series we reported a discrepancy in the oxygen abundance derived from the 630nm and the subordinate [OI] line at 636nm in dwarf stars, including the Sun. Here we analyse several, in part new, solar observations of the the centre-to-limb variation of the spectral region including the blend at 630nm in order to separate the individual contributions of oxygen and nickel. We analyse intensity spectra observed at different limb angles in comparison with line formation computations performed on a CO5BOLD 3D hydrodynamical simulation of the solar atmosphere. The oxygen abundances obtained from the forbidden line at different limb angles are inconsistent if the commonly adopted nickel abundance of 6.25 is assumed in our local thermodynamic equilibrium computations. With a slightly lower nickel abundance, A(Ni)~6.1, we obtain consistent fits indicating an oxygen abundance of A(O)=8.73+/-0.05. At this value the discrepancy with the subordinate oxygen line remains. The derived value of the oxygen abundance supports the notion of a rather low oxygen abundance in the solar hotosphere. However, it is disconcerting that the forbidden oxygen lines at 630 and 636nm give noticeably different results, and that the nickel abundance derived here from the 630nm blend is lower than expected from other nickel lines.Comment: to appear in A&

    Absolute velocity measurements in sunspot umbrae

    Full text link
    In sunspot umbrae, convection is largely suppressed by the strong magnetic field. Previous measurements reported on negligible convective flows in umbral cores. Based on this, numerous studies have taken the umbra as zero reference to calculate Doppler velocities of the ambient active region. To clarify the amount of convective motion in the darkest part of umbrae, we directly measured Doppler velocities with an unprecedented accuracy and precision. We performed spectroscopic observations of sunspot umbrae with the Laser Absolute Reference Spectrograph (LARS) at the German Vacuum Tower Telescope. A laser frequency comb enabled the calibration of the high-resolution spectrograph and absolute wavelength positions. A thorough spectral calibration, including the measurement of the reference wavelength, yielded Doppler shifts of the spectral line Ti i 5713.9 {\AA} with an uncertainty of around 5 m s-1. The measured Doppler shifts are a composition of umbral convection and magneto-acoustic waves. For the analysis of convective shifts, we temporally average each sequence to reduce the superimposed wave signal. Compared to convective blueshifts of up to -350 m s-1 in the quiet Sun, sunspot umbrae yield a strongly reduced convective blueshifts around -30 m s-1. {W}e find that the velocity in a sunspot umbra correlates significantly with the magnetic field strength, but also with the umbral temperature defining the depth of the titanium line. The vertical upward motion decreases with increasing field strength. Extrapolating the linear approximation to zero magnetic field reproduces the measured quiet Sun blueshift. Simply taking the sunspot umbra as a zero velocity reference for the calculation of photospheric Dopplergrams can imply a systematic velocity error.Comment: 10 pages, 7 figures, 2 tables, Appendix with 5 figure

    Self-organization of hydrophobic soil and granular surfaces

    Get PDF
    Soil can become extremely water repellent following forest fires or oil spillages, thus preventing penetration of water and increasing runoff and soil erosion. Here the authors show that evaporation of a droplet from the surface of a hydrophobic granular material can be an active process, lifting, self-coating, and selectively concentrating small solid grains. Droplet evaporation leads to the formation of temporary liquid marbles and, as droplet volume reduces, particles of different wettabilities compete for water-air interfacial surface area. This can result in a sorting effect with self-organization of a mixed hydrophobic-hydrophilic aggregate into a hydrophobic shell surrounding a hydrophilic core

    Comb-calibrated solar spectroscopy through a multiplexed single-mode fiber channel

    Get PDF
    We investigate a new scheme for astronomical spectrograph calibration using the laser frequency comb at the Solar Vacuum Tower Telescope on Tenerife. Our concept is based upon a single-mode fiber channel, that simultaneously feeds the spectrograph with comb light and sunlight. This yields nearly perfect spatial mode matching between the two sources. In combination with the absolute calibration provided by the frequency comb, this method enables extremely robust and accurate spectroscopic measurements. The performance of this scheme is compared to a sequence of alternating comb and sunlight, and to absorption lines from Earth's atmosphere. We also show how the method can be used for radial-velocity detection by measuring the well-explored 5-minute oscillations averaged over the full solar disk. Our method is currently restricted to solar spectroscopy, but with further evolving fiber-injection techniques it could become an option even for faint astronomical targets.Comment: 21 pages, 11 figures. A video abstract for this paper is available on youtube. For watching the video, please follow https://www.youtube.com/watch?v=oshdZgrt89I . The video abstract is also available for streaming and download on the related article website of New Journal of Physic

    Effect of Particle Size on Droplet Infiltration into Hydrophobic Porous Media As a Model of Water Repellent Soil

    Get PDF
    The wettability of soil is of great importance for plants and soil biota, and in determining the risk for preferential flow, surface runoff, flooding,and soil erosion. The molarity of ethanol droplet (MED) test is widely used for quantifying the severity of water repellency in soils that show reduced wettability and is assumed to be independent of soil particle size. The minimum ethanol concentration at which droplet penetration occurs within a short time (≀10 s) provides an estimate of the initial advancing contact angle at which spontaneous wetting is expected. In this study, we test the assumption of particle size independence using a simple model of soil, represented by layers of small (0.2–2 mm) diameter beads that predict the effect of changing bead radius in the top layer on capillary driven imbibition. Experimental results using a three-layer bead system show broad agreement with the model and demonstrate a dependence of the MED test on particle size. The results show that the critical initial advancing contact angle for penetration can be considerably less than 90° and varies with particle size, demonstrating that a key assumption currently used in the MED testing of soil is not necessarily valid

    The Univariate Marginal Distribution Algorithm Copes Well With Deception and Epistasis

    Full text link
    In their recent work, Lehre and Nguyen (FOGA 2019) show that the univariate marginal distribution algorithm (UMDA) needs time exponential in the parent populations size to optimize the DeceptiveLeadingBlocks (DLB) problem. They conclude from this result that univariate EDAs have difficulties with deception and epistasis. In this work, we show that this negative finding is caused by an unfortunate choice of the parameters of the UMDA. When the population sizes are chosen large enough to prevent genetic drift, then the UMDA optimizes the DLB problem with high probability with at most λ(n2+2eln⁥n)\lambda(\frac{n}{2} + 2 e \ln n) fitness evaluations. Since an offspring population size λ\lambda of order nlog⁥nn \log n can prevent genetic drift, the UMDA can solve the DLB problem with O(n2log⁥n)O(n^2 \log n) fitness evaluations. In contrast, for classic evolutionary algorithms no better run time guarantee than O(n3)O(n^3) is known (which we prove to be tight for the (1+1){(1+1)} EA), so our result rather suggests that the UMDA can cope well with deception and epistatis. From a broader perspective, our result shows that the UMDA can cope better with local optima than evolutionary algorithms; such a result was previously known only for the compact genetic algorithm. Together with the lower bound of Lehre and Nguyen, our result for the first time rigorously proves that running EDAs in the regime with genetic drift can lead to drastic performance losses

    Semimetalic antiferromagnetism in the half-Heusler compound CuMnSb

    Full text link
    The half-Heusler compound CuMnSb, the first antiferromagnet (AFM) in the Mn-based class of Heuslers and half-Heuslers that contains several conventional and half metallic ferromagnets, shows a peculiar stability of its magnetic order in high magnetic fields. Density functional based studies reveal an unusual nature of its unstable (and therefore unseen) paramagnetic state, which for one electron less (CuMnSn, for example) would be a zero gap semiconductor (accidentally so) between two sets of very narrow, topologically separate bands of Mn 3d character. The extremely flat Mn 3d bands result from the environment: Mn has four tetrahedrally coordinated Cu atoms whose 3d states lie well below the Fermi level, and the other four tetrahedrally coordinated sites are empty, leaving chemically isolated Mn 3d states. The AFM phase can be pictured heuristically as a self-doped Cu1+^{1+}Mn2+^{2+}Sb3−^{3-} compensated semimetal with heavy mass electrons and light mass holes, with magnetic coupling proceeding through Kondo and/or antiKondo coupling separately through the two carrier types. The ratio of the linear specific heat coefficient and the calculated Fermi level density of states indicates a large mass enhancement m∗/m∌5m^*/m \sim 5, or larger if a correlated band structure is taken as the reference

    Mutations in the C-terminal region of the HIV-1 reverse transcriptase and their correlation with drug resistance associated mutations and antiviral treatment

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>Replication of HIV-1 after cell entry is essentially dependent on the reverse transcriptase (RT). Antiretroviral drugs impairing the function of the RT currently aim at the polymerase subunit. One reason for failure of antiretroviral treatment is the evolvement of resistance-associated mutations in the viral genome. For RT inhibitors, almost all identified mutations are located within the polymerase; therefore, general genotyping confines to investigate this subunit. Recently several studies have shown that substitutions within the RNase H and the connection domain increase antiviral drug-resistance in vitro, and some of them are present in patient isolates.</p> <p>Aim</p> <p>The aim of the present study was to investigate the prevalence of these substitutions and their association with mutations in the polymerase domain arising during antiretroviral treatment.</p> <p>Materials and methods</p> <p>We performed genotypic analyzes on seventy-four virus isolates derived from treated and untreated patients, followed at the HIV Centre of the Johann Wolfgang Goethe University Hospital (Frankfurt/Main, Germany). We subsequently analysed the different substitutions in the c-terminal region to evaluate whether there were associations with each other, n-terminal substitutions or with antiretroviral treatment.</p> <p>Results</p> <p>We identified several primer grip substitutions, but almost all of them were located in the connection domain. This is consistent with other in-vivo studies, in which especially the primer grip residues located in the RNase H were unvaried. Furthermore, we identified other substitutions in the connection domain and in the RNase H. Especially E399D seemed to be associated with an antiretroviral treatment and N-terminal resistance-delivering mutations.</p> <p>Conclusion</p> <p>Some of the identified substitutions were associated with antiviral treatment and drug resistance-associated mutations. Due to the low prevalence of C-terminal mutations and as only a few of them could be associated with antiviral treatment and N-terminal resistance-delivering mutations, we would not recommend routinely testing of the C-terminal RT region.</p

    The Relevance of Pyrogenic Carbon for Carbon Budgets From Fires: Insights From the FIREX Experiment

    Get PDF
    Vegetation fires play an important role in global and regional carbon cycles. Due to climate warming and land use shifts, fire patterns are changing and fire impacts increasing in many of the world's regions. Reducing uncertainties in carbon budgeting calculations from fires is therefore fundamental to advance our current understanding and forecasting capabilities. Here we study 20 chamber burns from the FIREX FireLab experiment, which burnt a representative set of North American wildland fuels, to assess the following: (i) differences in carbon emission estimations between the commonly used “consumed biomass” approach and the “burnt carbon” approach; (ii) pyrogenic carbon (PyC) production rates; and (iii) thermal and chemical recalcitrance of the PyC produced, as proxies of its biogeochemical stability. We find that the “consumed biomass” approach leads to overestimation of carbon emissions by 2–27% (most values between 2% and 10%). This accounting error arises largely from not considering PyC production and, even if relatively small, can therefore have important implications for medium‐ and long‐term carbon budgeting. A large fraction (34–100%) of this PyC was contained in the charred fine residue, a postfire material frequently overlooked in fire carbon research. However, the most recalcitrant PyC was in the form of woody charcoal, with estimated half‐lives for most samples exceeding 1,000 years. Combustion efficiency was relatively high in these laboratory burns compared to actual wildland fire conditions, likely leading to lower PyC production rates. We therefore argue that the PyC production values obtained here, and associated overestimation of carbon emissions, should be taken as low‐end estimates for wildland fire conditions
    • 

    corecore