256 research outputs found
Patient-reported outcomes from STARTRK-2: a global phase II basket study of entrectinib for ROS1 fusion-positive non-small-cell lung cancer and NTRK fusion-positive solid tumours.
Patient-reported outcomes (PROs) are increasingly relevant endpoints in clinical trials, contributing to our understanding of risk-benefit profiles, in addition to efficacy and safety data. We investigated the impact of entrectinib on patient-reported symptoms, functioning, and health-related quality of life.
STARTRK-2 is a phase II basket study in patients with locally advanced/metastatic neurotrophic receptor tyrosine kinase 1/2/3 (NTRK1/2/3) and ROS proto-oncogene 1 (ROS1) fusion-positive solid tumours. PROs (prespecified secondary endpoint) were evaluated using the European Organization for Research and Treatment of Cancer quality-of-life questionnaire (QLQ-C30), lung cancer module (QLQ-LC13), and colorectal cancer module (QLQ-CR29), and the EuroQoL 5-Dimension 3-Level instruments, completed before cycle 1 day 1 and each subsequent 4-week cycle of entrectinib dosing, and the end of treatment. Adverse events and treatment-related symptoms were assessed in the safety analysis (SA)-PRO population. Tumour-related symptoms, functioning, and global health status were assessed in the efficacy analysis (EA)-PRO population. Data cut-offs: 31 October 2018 NTRK cohort; 01 May 2019 ROS1 cohort.
SA-PRO populations comprised patients with NTRK fusion-positive solid tumours (N = 88) or ROS1 fusion-positive non-small-cell lung cancer (N = 180) who received one or more doses of entrectinib, completed PRO questionnaires on cycle 1 day 1 and answered one or more questions on-study. EA-PRO populations (N = 71) and (N = 145), respectively, comprised SA-PRO patients with measurable baseline disease. Moderate-to-high baseline global health status scores were maintained in EA-PRO populations during treatment. Role and physical functioning scores were moderate-to-high at baseline, with trends towards clinical improvement during treatment. Both cohorts reported low-to-moderate symptom burden at baseline, which was maintained or trended towards clinically meaningful improvement. Symptoms commonly associated with cancer treatment (e.g. nausea, fatigue) remained stable or improved during treatment. All SA-PRO patients experienced one or more adverse events, most frequently constipation or diarrhoea.
PRO findings were consistent with the favourable safety profile of entrectinib, and further reinforce the positive benefit-risk profile of this treatment, indicating minimal overall treatment burden.This study was supported by F. Hoffmann-La Roche Ltd.S
Special Aspects of Translating Military Vocabulary in Warhammer 40,000 - Related Literature
This article is dedicated to lexical and stylistic aspects of translating Warhammer 40,000 - related literature. The examples of such aspects were taken from translations published on social media. This study resulted in listing main special aspects of translating articles belonging to the universe of Warhammer 40,000 as well as practical recommendations
Elucidation of tonic and activated B-cell receptor signaling in Burkitt's lymphoma provides insights into regulation of cell survival.
Burkitt's lymphoma (BL) is a highly proliferative B-cell neoplasm and is treated with intensive chemotherapy that, because of its toxicity, is often not suitable for the elderly or for patients with endemic BL in developing countries. BL cell survival relies on signals transduced by B-cell antigen receptors (BCRs). However, tonic as well as activated BCR signaling networks and their relevance for targeted therapies in BL remain elusive. We have systematically characterized and compared tonic and activated BCR signaling in BL by quantitative phosphoproteomics to identify novel BCR effectors and potential drug targets. We identified and quantified ∼16,000 phospho-sites in BL cells. Among these sites, 909 were related to tonic BCR signaling, whereas 984 phospho-sites were regulated upon BCR engagement. The majority of the identified BCR signaling effectors have not been described in the context of B cells or lymphomas yet. Most of these newly identified BCR effectors are predicted to be involved in the regulation of kinases, transcription, and cytoskeleton dynamics. Although tonic and activated BCR signaling shared a considerable number of effector proteins, we identified distinct phosphorylation events in tonic BCR signaling. We investigated the functional relevance of some newly identified BCR effectors and show that ACTN4 and ARFGEF2, which have been described as regulators of membrane-trafficking and cytoskeleton-related processes, respectively, are crucial for BL cell survival. Thus, this study provides a comprehensive dataset for tonic and activated BCR signaling and identifies effector proteins that may be relevant for BL cell survival and thus may help to develop new BL treatments
KRAS-mutation incidence and prognostic value are metastatic site-specific in lung adenocarcinoma: poor prognosis in patients with KRAS-mutation and bone metastasis
Current guidelines lack comprehensive information on the metastatic site-specific role of KRAS mutation in lung adenocarcinoma (LADC). We investigated the effect of KRAS mutation on overall survival (OS) in this setting. In our retrospective study, 500 consecutive Caucasian metastatic LADC patients with known KRAS mutational status were analyzed after excluding 32 patients with EGFR mutations. KRAS mutation incidence was 28.6%. The most frequent metastatic sites were lung (45.6%), bone (26.2%), adrenal gland (17.4%), brain (16.8%), pleura (15.6%) and liver (11%). Patients with intrapulmonary metastasis had significantly increased KRAS mutation frequency compared to those with extrapulmonary metastases (35% vs 26.5%, p=0.0125). In contrast, pleural dissemination and liver involvement were associated with significantly decreased KRAS mutation incidence (vs all other metastatic sites; 17% (p<0.001) and 16% (p=0.02) vs 33%, respectively). Strikingly, we found a significant prognostic effect of KRAS status only in the bone metastatic subcohort (KRAS-wild-type vs KRAS-mutant; median OS 9.7v 3.7 months; HR, 0.49; 95% CI, 0.31 to 0.79; p =0.003). Our study suggests that KRAS mutation frequency in LADC patients shows a metastatic site dependent variation and, moreover, that the presence of KRAS mutation is associated with significantly worse outcome in bone metastatic cases.(VLID)469049
MicroRNA profiling of diverse endothelial cell types
<p>Abstract</p> <p>Background</p> <p>MicroRNAs are ~22-nt long regulatory RNAs that serve as critical modulators of post-transcriptional gene regulation. The diversity of miRNAs in endothelial cells (ECs) and the relationship of this diversity to epithelial and hematologic cells is unknown. We investigated the baseline miRNA signature of human ECs cultured from the aorta (HAEC), coronary artery (HCEC), umbilical vein (HUVEC), pulmonary artery (HPAEC), pulmonary microvasculature (HPMVEC), dermal microvasculature (HDMVEC), and brain microvasculature (HBMVEC) to understand the diversity of miRNA expression in ECs.</p> <p>Results</p> <p>We identified 166 expressed miRNAs, of which 3 miRNAs (miR-99b, miR-20b and let-7b) differed significantly between EC types and predicted EC clustering. We confirmed the significance of these miRNAs by RT-PCR analysis and in a second data set by Sylamer analysis. We found wide diversity of miRNAs between endothelial, epithelial and hematologic cells with 99 miRNAs shared across cell types and 31 miRNAs unique to ECs. We show polycistronic miRNA chromosomal clusters have common expression levels within a given cell type.</p> <p>Conclusions</p> <p>EC miRNA expression levels are generally consistent across EC types. Three microRNAs were variable within the dataset indicating potential regulatory changes that could impact on EC phenotypic differences. MiRNA expression in endothelial, epithelial and hematologic cells differentiate these cell types. This data establishes a valuable resource characterizing the diverse miRNA signature of ECs.</p
Synthetic microparticles conjugated with VEGF165 improve the survival of endothelial progenitor cells via microRNA-17 inhibition
Several cell-based therapies are under pre-clinical and clinical evaluation for the treatment of ischemic diseases. Poor survival and vascular engraftment rates of transplanted cells force them to work mainly via time-limited paracrine actions. Although several approaches, including the use of soluble vascular endothelial growth factor (sVEGF)-VEGF165, have been developed in the last 10 years to enhance cell survival, they showed limited efficacy. Here, we report a pro-survival approach based on VEGF-immobilized microparticles (VEGF-MPs). VEGF-MPs prolong VEGFR-2 and Akt phosphorylation in cord blood-derived late outgrowth endothelial progenitor cells (OEPCs). In vivo, OEPC aggregates containing VEGF-MPs show higher survival than those treated with sVEGF. Additionally, VEGF-MPs decrease miR-17 expression in OEPCs, thus increasing the expression of its target genes CDKN1A and ZNF652. The therapeutic effect of OEPCs is improved in vivo by inhibiting miR-17. Overall, our data show an experimental approach to improve therapeutic efficacy of proangiogenic cells for the treatment of ischemic diseases.Soluble vascular endothelial growth factor (VEGF) enhances vascular engraftment of transplanted cells but the efficacy is low. Here, the authors show that VEGF-immobilized microparticles prolong survival of endothelial progenitors in vitro and in vivo by downregulating miR17 and upregulating CDKN1A and ZNF652
Targeting RET in Patients With RET-Rearranged Lung Cancers: Results From the Global, Multicenter RET Registry.
Purpose In addition to prospective trials for non-small-cell lung cancers (NSCLCs) that are driven by less common genomic alterations, registries provide complementary information on patient response to targeted therapies. Here, we present the results of an international registry of patients with RET-rearranged NSCLCs, providing the largest data set, to our knowledge, on outcomes of RET-directed therapy thus far. Methods A global, multicenter network of thoracic oncologists identified patients with pathologically confirmed NSCLC that harbored a RET rearrangement. Molecular profiling was performed locally by reverse transcriptase polymerase chain reaction, fluorescence in situ hybridization, or next-generation sequencing. Anonymized data-clinical, pathologic, and molecular features-were collected centrally and analyzed by an independent statistician. Best response to RET tyrosine kinase inhibition administered outside of a clinical trial was determined by RECIST v1.1. Results By April 2016, 165 patients with RET-rearranged NSCLC from 29 centers across Europe, Asia, and the United States were accrued. Median age was 61 years (range, 29 to 89 years). The majority of patients were never smokers (63%) with lung adenocarcinomas (98%) and advanced disease (91%). The most frequent rearrangement was KIF5B-RET (72%). Of those patients, 53 received one or more RET tyrosine kinase inhibitors in sequence: cabozantinib (21 patients), vandetanib (11 patients), sunitinib (10 patients), sorafenib (two patients), alectinib (two patients), lenvatinib (two patients), nintedanib (two patients), ponatinib (two patients), and regorafenib (one patient). The rate of any complete or partial response to cabozantinib, vandetanib, and sunitinib was 37%, 18%, and 22%, respectively. Further responses were observed with lenvantinib and nintedanib. Median progression-free survival was 2.3 months (95% CI, 1.6 to 5.0 months), and median overall survival was 6.8 months (95% CI, 3.9 to 14.3 months). Conclusion Available multikinase inhibitors had limited activity in patients with RET-rearranged NSCLC in this retrospective study. Further investigation of the biology of RET-rearranged lung cancers and identification of new targeted therapeutics will be required to improve outcomes for these patients
MicroRNA-21 Exhibits Antiangiogenic Function by Targeting RhoB Expression in Endothelial Cells
BACKGROUND: MicroRNAs (miRNAs) are endogenously expressed small non-coding RNAs that regulate gene expression at post-transcriptional level. The recent discovery of the involvement of these RNAs in the control of angiogenesis renders them very attractive in the development of new approaches for restoring the angiogenic balance. Whereas miRNA-21 has been demonstrated to be highly expressed in endothelial cells, the potential function of this miRNA in angiogenesis has never been investigated. METHODOLOGY/PRINCIPAL FINDINGS: We first observed in endothelial cells a negative regulation of miR-21 expression by serum and bFGF, two pro-angiogenic factors. Then using in vitro angiogenic assays, we observed that miR-21 acts as a negative modulator of angiogenesis. miR-21 overexpression reduced endothelial cell proliferation, migration and the ability of these cells to form tubes whereas miR-21 inhibition using a LNA-anti-miR led to opposite effects. Expression of miR-21 in endothelial cells also led to a reduction in the organization of actin into stress fibers, which may explain the decrease in cell migration. Further mechanistic studies showed that miR-21 targets RhoB, as revealed by a decrease in RhoB expression and activity in miR-21 overexpressing cells. RhoB silencing impairs endothelial cell migration and tubulogenesis, thus providing a possible mechanism for miR-21 to inhibit angiogenesis. Finally, the therapeutic potential of miR-21 as an angiogenesis inhibitor was demonstrated in vivo in a mouse model of choroidal neovascularization. CONCLUSIONS/SIGNIFICANCE: Our results identify miR-21 as a new angiogenesis inhibitor and suggest that inhibition of cell migration and tubulogenesis is mediated through repression of RhoB
Anchor Side Chains of Short Peptide Fragments Trigger Ligand-Exchange of Class II MHC Molecules
Class II MHC molecules display peptides on the cell surface for the surveillance by CD4+ T cells. To ensure that these ligands accurately reflect the content of the intracellular MHC loading compartment, a complex processing pathway has evolved that delivers only stable peptide/MHC complexes to the surface. As additional safeguard, MHC molecules quickly acquire a ‘non-receptive’ state once they have lost their ligand. Here we show now that amino acid side chains of short peptides can bypass these safety mechanisms by triggering the reversible ligand-exchange. The catalytic activity of dipeptides such as Tyr-Arg was stereo-specific and could be enhanced by modifications addressing the conserved H-bond network near the P1 pocket of the MHC molecule. It affected both antigen-loading and ligand-release and strictly correlated with reported anchor preferences of P1, the specific target site for the catalytic side chain of the dipeptide. The effect was evident also in CD4+ T cell assays, where the allele-selective influence of the dipeptides translated into increased sensitivities of the antigen-specific immune response. Molecular dynamic calculations support the hypothesis that occupation of P1 prevents the ‘closure’ of the empty peptide binding site into the non-receptive state. During antigen-processing and -presentation P1 may therefore function as important “sensor” for peptide-load. While it regulates maturation and trafficking of the complex, on the cell surface, short protein fragments present in blood or lymph could utilize this mechanism to alter the ligand composition on antigen presenting cells in a catalytic way
Genetic and Pharmacological Inhibition of MicroRNA-92a Maintains Podocyte Cell Cycle Quiescence and Limits Crescentic Glomerulonephritis
Crescentic rapidly progressive glomerulonephritis (RPGN) represents the most aggressive form of acquired glomerular disease. While most therapeutic approaches involve potentially toxic immunosuppressive strategies, the pathophysiology remains incompletely understood. Podocytes are glomerular epithelial cells that are normally growth-arrested because of the expression of cyclin-dependent kinase (CDK) inhibitors. An exception is in RPGN where podocytes undergo a deregulation of their differentiated phenotype and proliferate. Here we demonstrate that microRNA-92a (miR-92a) is enriched in podocytes of patients and mice with RPGN. The CDK inhibitor p57Kip2 is a major target of miR-92a that constitutively safeguards podocyte cell cycle quiescence. Podocyte-specific deletion of miR-92a in mice de-repressed the expression of p57Kip2 and prevented glomerular injury in RPGN. Administration of an anti-miR-92a after disease initiation prevented albuminuria and kidney failure, indicating miR-92a inhibition as a potential therapeutic strategy for RPGN. We demonstrate that miRNA induction in epithelial cells can break glomerular tolerance to immune injury
- …