872 research outputs found

    High Temperature Expansions and Dynamical Systems

    Full text link
    We develop a resummed high-temperature expansion for lattice spin systems with long range interactions, in models where the free energy is not, in general, analytic. We establish uniqueness of the Gibbs state and exponential decay of the correlation functions. Then, we apply this expansion to the Perron-Frobenius operator of weakly coupled map lattices.Comment: 33 pages, Latex; [email protected]; [email protected]

    Phase Transition in the 1d Random Field ising model with long range interaction

    Full text link
    We study the one dimensional Ising model with ferromagnetic, long range interaction which decays as |i-j|^{-2+a}, 1/2< a<1, in the presence of an external random filed. we assume that the random field is given by a collection of independent identically distributed random variables, subgaussian with mean zero. We show that for temperature and strength of the randomness (variance) small enough with P=1 with respect to the distribution of the random fields there are at least two distinct extremal Gibbs measures

    Translation-invariance of two-dimensional Gibbsian point processes

    Full text link
    The conservation of translation as a symmetry in two-dimensional systems with interaction is a classical subject of statistical mechanics. Here we establish such a result for Gibbsian particle systems with two-body interaction, where the interesting cases of singular, hard-core and discontinuous interaction are included. We start with the special case of pure hard core repulsion in order to show how to treat hard cores in general.Comment: 44 pages, 6 figure

    Uniqueness of Gibbs states in one-dimensional antiferromagnetic model with long-range interaction

    Get PDF
    Cataloged from PDF version of article.Uniqueness of Gibbs states in the one-dimensional antiferromagnetic model with very long-range interaction is established. © 1999 American Institute of Physics

    Dobrushin states in the \phi^4_1 model

    Full text link
    We consider the van der Waals free energy functional in a bounded interval with inhomogeneous Dirichlet boundary conditions imposing the two stable phases at the endpoints. We compute the asymptotic free energy cost, as the length of the interval diverges, of shifting the interface from the midpoint. We then discuss the effect of thermal fluctuations by analyzing the \phi^4_1-measure with Dobrushin boundary conditions. In particular, we obtain a nontrivial limit in a suitable scaling in which the length of the interval diverges and the temperature vanishes. The limiting state is not translation invariant and describes a localized interface. This result can be seen as the probabilistic counterpart of the variational convergence of the associated excess free energy.Comment: 34 page

    The low-temperature phase of Kac-Ising models

    Get PDF
    We analyse the low temperature phase of ferromagnetic Kac-Ising models in dimensions d2d\geq 2. We show that if the range of interactions is \g^{-1}, then two disjoint translation invariant Gibbs states exist, if the inverse temperature \b satisfies \b -1\geq \g^\k where \k=\frac {d(1-\e)}{(2d+1)(d+1)}, for any \e>0. The prove involves the blocking procedure usual for Kac models and also a contour representation for the resulting long-range (almost) continuous spin system which is suitable for the use of a variant of the Peierls argument.Comment: 19pp, Plain Te

    Quantum Markov fields on graphs

    Get PDF
    We introduce generalized quantum Markov states and generalized d-Markov chains which extend the notion quantum Markov chains on spin systems to that on CC^*-algebras defined by general graphs. As examples of generalized d-Markov chains, we construct the entangled Markov fields on tree graphs. The concrete examples of generalized d-Markov chains on Cayley trees are also investigated.Comment: 23 pages, 1 figure. accepted to "Infinite Dimensional Anal. Quantum Probability & Related Topics

    A Markov chain approach to renormalization group transformations

    Full text link
    We aim at an explicit characterization of the renormalized Hamiltonian after decimation transformation of a one-dimensional Ising-type Hamiltonian with a nearest-neighbor interaction and a magnetic field term. To facilitate a deeper understanding of the decimation effect, we translate the renormalization flow on the Ising Hamiltonian into a flow on the associated Markov chains through the Markov-Gibbs equivalence. Two different methods are used to verify the well-known conjecture that the eigenvalues of the linearization of this renormalization transformation about the fixed point bear important information about all six of the critical exponents. This illustrates the universality property of the renormalization group map in this case.Comment: 10 page

    1-Loop improved lattice action for the nonlinear sigma-model

    Full text link
    In this paper we show the Wilson effective action for the 2-dimensional O(N+1)-symmetric lattice nonlinear sigma-model computed in the 1-loop approximation for the nonlinear choice of blockspin Φ(x)\Phi(x), \Phi(x)= \Cav\phi(x)/{|\Cav\phi(x)|},where \Cav is averaging of the fundamental field ϕ(z)\phi(z) over a square xx of side a~\tilde a. The result for SeffS_{eff} is composed of the classical perfect action with a renormalized coupling constant βeff\beta_{eff}, an augmented contribution from a Jacobian, and further genuine 1-loop correction terms. Our result extends Polyakov's calculation which had furnished those contributions to the effective action which are of order lna~/a\ln \tilde a /a, where aa is the lattice spacing of the fundamental lattice. An analytic approximation for the background field which enters the classical perfect action will be presented elsewhere.Comment: 3 (2-column format) pages, 1 tex file heplat99.tex, 1 macro package Espcrc2.sty To appear in Nucl. Phys. B, Proceedings Supplements Lattice 9

    Droplet condensation and isoperimetric towers

    Get PDF
    We consider a variational problem in a planar convex domain, motivated by statistical mechanics of crystal growth in a saturated solution. The minimizers are constructed explicitly and are completely characterized
    corecore