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1. Introduction

In 1963 Kac et al. [KUH] introduced a statistical mechanics model of particles interacting via

long, but �nite range interactions, i.e. through potentials of the form J
(r) � 
dJ(
r), there J is

some function of bounded support or rapid decrease (the original example was J(r) = e�r) and 


is a small parameter. These models were introduced as microscopic models for the van der Waals

theory of the liquid-gas transition. In fact, in the context of these models it proved possible to derive

in a mathematically rigorous way the van der Waals theory including the Maxwell construction in

the limit 
 # 0. In mathematical terms, this is stated as the Lebowitz-Penrose theorem[LP]: The

distribution of the density satis�es in the in�nite volume limit a large deviation principle with a

rate function that, in the limit as 
 tends to zero, converges to the convex hull of the van der Waals

free energy. For a review of these results, see e.g. the textbook by Thompson [T].

Only rather recently there has been a more intense interest in the study of Kac models that

went beyond the study of the global thermodynamic potentials in the Lebowitz-Penrose limit,

but that also considers the distribution of local mesoscopic observables. This program has been

carried out very nicely in the case of the Kac-Ising model in one spatial dimension by Cassandro,

Orlandi, and Presutti [COP]. A closely related analysis had been performed earlier by Bolthausen

and Schmock [BS]. These analysis can be seen as a rigorous derivation of a Ginzburg-Landau type

�eld theory for these models. Very recently, such an analysis was also carried out in a disordered

version of the Kac Ising model, the so-called Kac-Hop�eld model by Bovier, Gayrard, and Picco

[BGP1,BGP2].

An extension of this work to higher dimensional situations would of course be greatly desirable.

This turns out to be not trivial and, surprisingly, even very elementary questions about the Kac

model in d � 2 are unsolved. One of them is the natural conjecture that the critical inverse tem-

perature �c(
) in the Kac model should converge, as 
 # 0, to the mean-�eld critical temperature.

This conjecture can be found e.g. in a recent paper by Cassandro, Marra, and Presutti [CMP]. In

that paper a lower bound �c(
) � 1 + b
2j ln
j is proven. A corresponding upper bound is only

known in a very particular case where re
ection positivity can be used [BFS].

In addressing this question one soon �nds the reason for this unfortunate state of a�airs. All

the powerful modern methods for analyzing the low-temperature phases of statistical mechanics

models, like low-temperature expansions and the Pirogov-Sinai theory, have been devised in view

of models with short range (often nearest neighbor) interactions, with possible longer range parts

treated as some nuisance that can be shown to be quite irrelevant. To deal with the genuinely

long-range interaction in Kac models, that is to exploit their long range nature, these methods

require substantial adaptation. The purpose of the present paper is to help to develop adequate

techniques to deal with this problem { that beyond proving the conjecture of [CMP] will, hopefully,
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also provide a basis for the analysis of disordered Kac models. (Together with possible other means

not touched by the presented article : most notably with suitably developed expansion techniques

for long range models).

The model we consider is de�ned as follows. We consider a measure space (S;F) where

S � f�1; 1gZZ
d

is equipped with the product topology of the discrete topology on f�1; 1g and F is

the corresponding �nitely generated sigma-algebra. We denote an element of S by � and call it a

spin-con�guration. If � � ZZd, we denote by �� the restriction of � to �. For any �nite volume �

we de�ne the energy of the con�guration �� (given the external con�guration ��c) as

H
;�(��; ��c) � � 1
2

X
i;j2�;j2ZZd

J
(i� j)�i�j �
X

i2�;j 62�

J
(i� j)�i�j (1:1)

where J
(i) � 
dJ(
i) and J : IRd ! IR is a function that satis�es
R
IR

d dxJ(x) = 1. For simplicity

we will assume that J has bounded support, but the extension of our proof to more moderate

assumptions on the decay properties of J is apparently not too di�cult. To be completely speci�c

we will even choose J(r) � cd1Ijxj�1 where cd normalizes the integral of J to one1. Here j � j is most

conveniently chosen as the sup-norm on IRd.

Finite volume Gibbs measures (\local speci�cations") are de�ned as usual as

�
�


;�;�(��) �
1

Z
�


;�;�

e��H
;�(��;��c ) (1:2)

where Z�


;�;� is the usual partition function. Note that under our assumptions on J the local

speci�cations for given � depend only on �nitely many coordinates of �. An in�nite volume Gibbs

state �
;� is a probability measure on (S;F) that satis�es the DLR-equations

�
;��
�


;�;� = �
;� (1:3)

Our �rst result will be the following

Theorem 1: Let d � 2. Then there exists a function f(
) with lim
#0 f(
) = 0 such that

for all � > 1 + f(
), there exist at least two disjoint extremal in�nite volume Gibbs states with

local speci�cations given by (1.2). Moreover, for 
 small enough, f(
) � 

1��

(2d+2)(1+1=d) for arbitrary

� > 0

Remark: This theorem shows that the conjecture of [CMP] is correct. Together with Theorem 1

of [CMP] it implies that lim
#0 �c(
) = 1 in the Kac model. While completing this work we have

received a paper by M. Cassandro and E. Presutti [CP] in which the conjecture of [CMP] is also

1 The generic name cd will be used in the sequel for various �nite, positive constants that only depend on

dimension.
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proven, but no explicit estimate on the asymptotics of the function f(
) is given. Their proof is

rather di�erent from ours. Although at the moment we make use of the spin 
ip symmetry of the

model, the contour language we introduce is also intended as a preparatory step for future use of

the Pirogov-Sinai theory for non-symmetric long range models.

We will in fact get more precise information on the in�nite volume Gibbs measures in the

course of the proof. This will be expressed in terms of the distribution of \local magnetization",

mx(�), de�ned on some suitable length scale 1 � ` � 
�1. Given such scale `, we will partition

the lattice ZZd into blocks, denoted by x of side length `. We set Identifying the block x with its

label x 2 ZZ, we could thus set

x � fi 2 ZZd j ji� `xj � `=2g (1:4)

We then de�ne

mx(�) �
1

`

X
i2x

�i (1:5)

In the sequel we will assume that all �nite volumes we consider are compatible with these blocks,

that is are decomposable into them. We will also assume that 
` is an integer. For any volume �

compatible with the block structure, we denote by M� � F� the sigma-algebra generated by the

family of variables fmx(�)gx2�. The block variables will be instrumental in the proof of Theorem

1. However, they are also the natural variables to characterize the nature of typical con�gurations

w.r.t. the Gibbs measure. We should note that this �rst step of passing to the variables mx(�) is

also used in [CP], in fact it is used in virtually all work on the Kac model.

The remainder of this article is organized as follows. In Section 2 the distribution of the block

spins are formally introduced and the block-spin approximation of the Hamiltonian is discussed.

In Section 3 we introduce our notion of Peierls contours and prove our theorem through variant of

the Peierls argument [P].

Acknowledgements: We thank Errico Presutti and Marcio Cassandro for sending us a copy of

their paper [CP] prior to publication. M. Zahradn��k also acknowledges useful discussions with E.

Presutti on Kac models in general and about their recent preprint in particular. We would like to

thank also the home institutions of the authors and the Erwin Schr�odinger Institute in Vienna for

hospitality that made this collaboration possible.

2. Block spin approximation

All the questions we want to answer in our model will after all concern the probabilities of

events that are elements of the sigma-algebras MV for �nite volumes V . If A 2 MV is such an
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event and � � V , we have the following useful identity

��

;�;�(A) =

X
��nV

��

;�;�(��nV )�

��nV ;��c


;�;V
(A)

=
X
��nV

��

;�;�(��nV )

X
mx;x2V

fmxg�A

�
��nV ;��c


;�;V
(fmxgx2V )

(2:1)

The sum over mx runs of course over the values f�1;�1+2`�d; : : : ; 1�2`�d; 1g Note that we may,

if J has compact support, assume without loss of generality that � is su�ciently large so that the

local speci�cation �
��nV ;��c


;�;V
does not depend on �. We will therefore drop the � in this expression.

The main point which makes the Kac-model special, is that the Hamiltonian is \close" to a

function of the block spins. Namely, we may write

H
;V (�V ; �V c) = � 1
2

X
x;y2V

X
i2x;j2y

J
(i; j)�i�j �
X

x2V;y2V c

X
i2x;j2y

J
(i; j)�i�j

= � 1
2

X
x;y2V

J
(`(x� y))
X

i2x;j2y

�i�j

�
X

x2V;y2V c

J
(`(x� y))
X

i2x;j2y

�i�j

� 1
2

X
x;y2V

X
i2x;j2y

[J
(i� j)� J
(`(x� y))] �i�j

= H
(0)

;`;V

(mV (�V );mV c(�V c)) + �H
;`;V (�V ; �V c)

(2:2)

where we have set (recall that J
(`x) = `�dJ`
(x))

H
(0)

;`;V

(mV ;mV c) � �`d 1
2

X
x;y2V

J
`(x� y)mxmy � `d
X

x2V;y2V c

J
`(x� y)mxmy (2:3)

and

�H
;`;V (�V ; �V c) = � 1
2

X
x;y2V

X
i2x;j2y

[J
(i� j) � J
(`(x� y))] �i�j

�
X

x2V;y2V c

X
i2x;j2y

[J
(i� j)� J
(`(x� y))] �i�j
(2:4)

Lemma 2.1: For any V � ZZd,

sup
�

j�H
;`;V (�V ; �V c)j � cd
`jV j (2:5)

where cd is some numerical constant that depends only on the dimension d.

Proof: This fact is well-known and simple for all Kac models. In our case it follows from the

observation that [J
(i� j)� J
(`(x� y))] = 0, unless jx� yj � 1=(
`).}
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As consequence of Lemma 2.1 we get the following useful upper and lower bounds for the

distribution of the block spins:

�
��nV


;�;V
(mV )

<

>

e��`
d
H
(0)


;`;V
(mV ;mV c )

Q
x2V

IE�1Imx(�)=mxP
mV

e��`
dH

(0)


;`;V
(mV ;mV c)

Q
x2V

IE�1Imx(�)=mx

e��cd
`jV j (2:6)

Of course

IE�1Imx(�)=mx

(
2�`

d�
`
d

1+mx
2

`d

�
; if `d=mx=2 2 ZZ

0; else
(2:7)

and thus, by Sterling's formula,

2�`
d

�
`d

1+mx`
d

2
`d

�
= e�`

d
I(mx)+O(ln `) (2:8)

where I(m), for m 2 [�1; 1] is

I(m) =
1 +m

2
ln(1 +m) +

1�m

2
ln(1�m) (2:9)

Therefore we de�ne

E
;�;`;V (mV ;mV c) � � 1
2

X
x;y2V

J
`(x�y)mxmy�
X

x2V;y2V c

J
`(x�y)mxmy+�
�1
X
x2V

I(mx) (2:10)

to get

Lemma 2.2: For any �nite volume V and any con�guration mV , we have

�
��nV


;�;V
(mV )

<

>

e��`
d
E
;�;`;V (mV ;mV c(�V c ))P

mV
e��`

dE
;�;`;V (mV ;mV c (�V c ))
e��cd
`jV j (2:11)

Remark: ` will be chosen as tending to in�nity as 
 tends to zero. The idea is that that E
;�;`;V is

in a sense a \rate function"; that is to say, E
;�;`;V alone determines the measure since the residual

entropy is only of the order d ln `
`d
jV j. The problem is that this is only meaningful when we consider

events A for which the minimal E
;�;`;V is of order jV j above the ground state to make sure that

neither the residual entropy nor the error terms in (2.11) may invalidate the result. We will have

to work in the next section to de�ne such events.

It is instructive to rewrite the functional E
;�;`;V in a slightly di�erent form using that

�mxmy = 1
2
(mx � my)

2 � 1
2
(m2

x
+ m2

y
) (we drop the indices 
; �; ` henceforth but keep this

dependence in mind). We set

eEV (mV ;mV c) � 1
4

X
x;y2V

J
`(x� y) (mx �my)
2
+

1

2

X
x2V;y2V c

J
`(x� y) (mx �my)
2

+
X
x2V

f�(mx)

(2:12)
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where f� is the well-known free energy function of the Curie-Weiss model,

f� �
�
��1I(mx)�

1
2
m2
x

�
(2:13)

Then

EV (mV ;mV c) = eEV (mV ;mV c)� CV (mV c) (2:14)

where

CV (mV c) �
1

2

X
x2V;y2V c

J
`(x� y)m2
y

(2:15)

depends only on the variables on V c.

The form eEV makes nicely evident the fact that the energy functional favours con�gurations

that are constant and close to the minima of the Curie-Weiss function f�(m).

3. Peierls contours

In this Section we de�ne an appropriate notion of Peierls-contours in our model and use this to

proof Theorem 1 by a version of the Peierls argument2. The general spirit behind the de�nition of

Peierls contours can be loosely characterized as follows: We want to de�ne a family of local events

that have the property that at least one of them has to occur, if the e�ect of boundary conditions

does not propagate to the interior of the system. Then one must show that the probability that

any of these events occurs is small. We will de�ne such events in terms of the block spin variables

mx(�). More precisely, since it is crucial for us to exploit that the new interaction is still long

range3, contours will be de�ned in terms of the local averages, �x(m), and the local variances,

 x(m), de�ned through

�x(m) �
X
y

J
`(x� y)my (3:1)

 x(m) �
X
y

J
`(x� y) (my � �y(m))
2

(3:2)

Then de�ne the sets

e� � �
x j j j�x(m)j �m�(�)j > �m�(�) or  x(m) > (�m�(�))2

	
(3:3)

2 While the proof of [CP] is also based on a Peierls argument, their de�nition of Peierls contours is completely

di�erent from ours.
3 For that reason it is not possible to directly use the methods developed in [DZ] for studying low temperature

phases of short range continuous spin models, although some of the ideas in that paper are used in our proof.
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where m�(�) is the largest solution of the equation x = tanh�x, that is the location of the non-

negative minimum of the function f�. We recall (see e.g [E]) that m�(�) = 0 if � � 1, m�(�) > 0 if

� > 1, lim�"1m�(�) = 1 and lim�#1
(m�(�))2

3(��1)
= 1. To simplify notation we will writem� �m�(�) in

the sequel. �; ẑ < 1 will be chosen in a suitable way later. Note that if the boundary conditions are

such that say �x(m(�)) � +m�, then, if the con�guration near the origin is such that �0(m(�) < 0,

there must be a region enclosing the origin on which � takes the value zero and thus belongs toe�. For a reason that will become clear later, in a �rst step we will regularize this set. For this we

introduce a second blocking of the lattice, this time on the scale of the range of the interaction.

The points u of this lattice are identi�ed with the blocks

u �
n
x 2 ZZdj jx� u=(
`)j � 1=(2
`)

o
(3:4)

just as in (1.4). We write in a natural way u(x) for the label of the unique block that contains x.

We will call sets that are unions of such blocks u regular sets. We put

�0 �
n
x ju(x) \ e� 6= ;

o
(3:5)

For some positive integer n � 1 to be chosen later, we now set

� �
�
x j dist(x;�0) � n(
`)�1

	
(3:6)

where dist is the metric induced by the sup-norm on IRd. n will depend on � and diverge as � # 1.

The precise value of n will be speci�ed later in (3.48). Notice that this de�nition assures that the

set � is a regular set in the sense de�ned above.. Connected components of the set set � together

with the speci�cation of the values of mx, x 2 � are called contours and are denoted by �. For

such a contour, we introduce the notion of its boundary @�, in the following sense:

@� �
�
x 2 � j dist(x;�c) � n(
`)�1

	
(3:7)

Note that by our de�nition of � we are assured that @� \ �0 = ;. We denote by

D� � fx j j�x(m)�m�j � �m�g \ �c (3:8)

and call these regions �-correct. Each connected component of the boundary of � connects either

to D+ or D�. We will denote such connected components by @�+
i
and @��

i
, respectively.

For a connected set � we denote by int� the simply connected set obtained by \�lling up the

holes" of �. This set is called the interior of a contour. The boundary of int� will be referred to

as the exterior boundary of �. The connected component of @� that is also the boundary of int �

will be called exterior boundary of � and denoted by @�ext.
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The strategy to prove Theorem 1 is the usual one. First we observe that if boundary conditions

are strongly plus, then in order to have that, say, j�0(m)�m�j > �m�, it must be true that there

exists a contour � such that 0 2 int � . Thus it su�ces to prove that the probability of contours

is su�ciently small. This will require a lower bound on the energy of any con�guration compatible

with the existence of �, and an upper bound on a carefully chosen reference con�guration in which

the contour is absent. We will show later (Lemma 3.8) that a lower bound on the energy can easily

be given in terms of the functions � and  , a fact that motivates the de�nition of e�. The long

range nature and of the interaction and the fact that the mx are essentially continuous variables

require the construction of the extensive \safety belts" around this set in order to assure an e�ective

decoupling of the core of a contour from its exterior. The crucial reason for the de�nition of contours

through the nonlocal functions � and  is however the fact that these are \slowly varying" functions

of x for any con�guration m. Therefore, even if the core e� is very "thin" (e.g. a single point),

one can show that on a much larger set j�0(m)�m�j or  x(m) must still be quite large (e.g. half

of what is asked for in e�). This guarantees that in spite of the very thick \safety belts" we must

construct around e�, the energy of a contour compares nicely with its volume j�j.

We will now establish the \decoupling" properties. For this we must establish some properties

of the con�guration m on @� that minimizes E@� for given boundary conditions.

De�nition 3.1: A con�guration m
opt

V
is called optimal if mopt minimizes EV (mV ;mV c) for a

given con�guration mV c .

An important point is that away from e�, due to our de�nition of contours con�gurations must

be close to constant in the following sense:

Lemma 3.2: Assume that dist(x; e�) > 1=(
`). Then

(i) X
y

J
`(x� y) (my �m�)
2
� 4�2(m�)2 (3:9)

and

(ii) for any V � e� X
y2V

J
`(x� y)jmy �m�j � 2�m�

sX
y2V

J
`(x� y) (3:10)

where the sign depends on whether �x(m) is positive or negative in the region.

Proof: The proof of (3.9) is straightforward from the de�nition of e� in (3.3) and (3.10) follows

from (3.9) by the Schwartz inequality. }

We will now establish properties of an optimal con�guration on regular sets with boundary
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conditions that satisfy properties (3.9) and (3.10).

Lemma 3.3: Let V be a regular set. Then there exists �d > 0 depending only on the dimension

d such that if mV c is a boundary conditions of + type for which (3.9) and (3.10) hold with � � �d,

then for all x 2 V , jmopt

x
�m�j � m�=2. The corresponding statement holds for � type boundary

conditions.

Proof: We see from (2.10) that we must have4for y 2 V

0 =
d

dmy

EV (mV ;mV c) = ��1I 0(my)� �y(m) (3:11)

(3.11) can be written as

my = tanh (��y(m)) (3:12)

We may tacitly assume that �y(m) is positive (this assumption will be shown to be consistent).

Since m� is a stable �xpoint of the function tanh�m that attracts all points on the positive half

line, it follows that j tanh (��y(m)) � m�j � j�y(m) � m�j and in particular, if �y(m) < m�,

tanh (��y(m)) > �y(m), while for �y(m) > m�, tanh (��y(m)) < �y(m). We will �rst show that

mopt

x
� m�=2. Let x 2 V denote a point where

mx = inf
y2V

fmy jmy � m�g (3:13)

If mx = m�, there is nothing to proof. But if mx < m�, then (3.13) can only be satis�ed if

dist(x; @V ) < 1=(
`). For such points we can write

mx �m� �
X
y2V

J
`(x� y)(my �m�) +
X
y2V c

J
`(x� y)(my �m�)

� (mx �m�)
X
y2V

J
`(x� y)� 2�m�

sX
y2V c

J
`(x� y)
(3:14)

where the second line follows by (3.10). Hence

mx �m� � �
2�m�qP

y2V c J
`(x� y)
(3:15)

On the other hand, (3.14) holds for any other point y 2 V as well, and inserting this into the �rst

line of (3.14) we get

mx �m� � (mx �m�)
X
y2V

X
z2V

J
`(x� y)J
`(y � z)� 4�m� (3:16)

4 We ignore the fact that mx takes only discrete values and look for the optimal solution in the space of real-

valued m. The point is that given such a solution, a discrete valued approximation can be constructed that di�ers

in energy by less than j�j=`d which is negligibly small.
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Clearly we have won if either

1�
X
y2V

X
z2V

J
`(x� y)J
`(y � z) � 8� (3:17)

or sX
y2V c

J
`(x� y) � 4� (3:18)

Due to the fact that V is composed of cubes of sidelength of the range of the interaction, this

follows from simple considerations if � is smaller than some dimension dependent constant. (Here

is the reason for our de�nition of �0). In fact,

1�
X
y2V

X
z2V

J
`(x� y)J
`(y � z) =
X
y2V c

J
`(x� y) +
X
y2V

X
z2V c

J
`(x� y)J
`(y � z) (3:19)

The point is that the second term on the right hand side of (3.19) cannot be too small as long as

dist(x; V c) � 1=(
`), for regular V (if V is not regular, this statement does not hold, of course;

just consider a thin long spike entering into V and let x be near the tip of the spike!). In fact, the

worst situation here occurs if x is at a distance r=(
`) from a \corner" of V c. One easily veri�es

that even in this caseX
y2V

X
z2V c

J
`(x� y)J
`(y � z) � 2�(d+1)
Z 1

0

ds (r + s)d�1(1� s)d

� 2�(d+1)
Z 1

0

ds sd�1(1� s)d = 2�(d+2)
((d� 1)!)2

(2d � 1)!

(3:20)

so that (3.18) is veri�ed if 4� is smaller than this number. The numerical value of that bound can

of course be improved, but we do not seek to do that.

Having established that mx � m�=2 in V , a trivial computation shows that our starting

assumption that �x(m) > 0 is also veri�ed. Thus we have proven that mopt

x
� m�=2. In the same

way one shows also that mopt

x
� 3m�=2 which concludes the proof of the lemma.}

In the sequel the notion of n-layer set de�ned in the following de�nition will be convenient.

De�nition 3.4: A regular set V is called a n-layer annulus, if there it is of the form

V =
n
x 2 eV c j dist(x; eV ) � n(
`)�1

o
(3:21)

for some connected set eV that is composed of blocks u. The sets

Vk �
n
x 2 eV c j (k � 1)(
`)�1 < dist(x; eV ) � k(
`)�1

o
(3:22)

are called the k � th layers of V .
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Note that the sets @� are by their de�nition n-layer sets.

We are interested in some properties of optimal con�gurations on n-layer sets. For this we will

use the following simple fact about the function f�, that may be found e.g. in [BG]

Lemma 3.5: Let f�(m) = ��1I(m)� 1
2
m2. Then, for all m 2 [�1; 1]

f�(m)� f�(m
�) � c(�) (jmj �m�)

2
(3:23)

where

c(�) �
ln cosh(�m�)

�(m�)2
�

1

2
(3:24)

has the property that c(�) > 0 for all � > 1 and

lim
�#1

c(�)

(m�)2
=

1

12
(3:25)

From this we will derive the following Lemma (The analog of this Lemma for short range and

purely quadratic Hamiltonians appeared already in [DZ]).

Lemma 3.6: Let V be an n-layer set with n � r=c(�). Then there exists a layer Vk in V such

that X
x2Vk

�
mopt

x

�2
� 2�r

1

8
(m�)2(jV1j+ jVnj) (3:26)

Proof: Let us set ux � jmxj �m� and and use the abbreviation

kuVkk
2
2 �

X
x2Vk

(ux)
2

(3:27)

and analogously for other functions. Then it is obvious from (2.12) that for any con�guration,

eEV nV1nV2
(mV nV1nVn

;mV1[Vn
) �

n�1X
k=2

c(�)kuVkk
2
2 +

X
x2V nV1nVn

f�(m
�) (3:28)

On the other hand, we may consider a con�guration that equals mopt on V1 and Vn and has

mx = m� for all x 2 V nV1nVn. For this con�guration

eEV nV1nV2
(mV nV1nVn

= m�;m
opt

V1[Vn
) =

1

2

X
x2V nV1nVn
y2V1[Vn

J
`(x� y)
�
mopt

y
�m�

�2
+

X
x2V nV1nVn

f�(m
�)

(3:29)
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By the de�nition of mopt, it must thus be true that

0 � eEV nV1nV2
(m

opt

V nV1nVn
;m

opt

V1[Vn
)� eEV nV1nV2

(m
opt

V nV1nVn
= m�;m

opt

V1[Vn
)

�

n�1X
k=2

c(�)kuVkk
2
2 �

1

2

X
x2V nV1nVn
y2V1[Vn

J
`(x� y)
�
mopt

y
�m�

�2

�

n�1X
k=2

c(�)kuVkk
2
2 �

1

2

�
ku

opt

V�1k
2
2 + ku

opt

Vn
k22
�

(3:30)

Thus, for any q < n=2, we have

qc(�)
q+1

inf
k=2

h
ku

opt

Vk
k22 + ku

opt

Vn+1�k
k22

i
�

n�1X
k=2

c(�)
h
ku

opt

Vk
k22 + ku

opt

Vn+1�k
k22

i
� 1

2
ku

opt

V1
k22+

1
2
ku

opt

V1
k22 (3:31)

from where
q+1

inf
k=2

�
kuVkk

2
2 + kuVn+1�kk

2
2

�
�

1

2qc(�)

�
ku

opt

V1
k22 + ku

opt

V1
k22
�

(3:32)

If q is chosen as the smallest integer greater than 1=c(�) this shows that there exist 2 � k � q + 1

such that �
kuVkk

2
2 + kuVn+1�kk

2
2

�
�

1

2

�
kuopt

V1
k22 + ku

opt

V1
k22
�

(3:33)

Iterating this construction, and using that by Lemma 3.3

1

2
ku

opt

V1
k22 +

1
2
ku

opt

V1
k22 �

1

8
(m�)2 (jV1j+ jVnj) (3:34)

we arrive at the assertion of the lemma. }

We are now ready to construct our reference con�guration and give an upper bound on its

energy. For given contour � and compatible external con�guration m on �c we call mopt the

con�guration on � that minimizes the energy for a given core e�. Clearly such a con�guration is

also an optimal con�guration on @� in the sense of De�nition 3.1. Thus by Lemma 3.2 we know

that in each connected component @��
i
of the boundary of � there exists a layer L�

i
of thickness

1=(
`) in @��
i
such that km

opt

L
�m�k22 � 2�r 1

8
(m�)2 1

2
[jV1(@�

�

i
)j + jVn(@�

�

i
)j] For given L�

i
we

decompose @��
i
into the two sets

@��
i;in

�
�
x 2 @��

i
nL�

i
j;dist(x;D�) > dist(L�

i
;D�)

	
(3:35)

and

@��
i;out

� @��
i
n@��

i;in
(3:36)

Without loss of generality we assume that the exterior boundary of our contour is attached to

the +-correct region. We now de�ne the reference con�guration mref

mref

x
�

8>>>><>>>>:
mopt

x
; if x 2 @�+

i;out

�mopt

x
; if x 2 @��

i;out

m�; for all other x 2 �

mx; for x 2 D+

�mx < for x 2 D�

(3:37)
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Lemma 3.7: Let mref be de�ned in (3.37). Then for any compatible external con�guration we

have that

eE�

�
m
ref

� ;m
ref

�c

�
�
X
i;�

eE
@��

i;out

�
m
opt

@�
�

i;out

;m�c

�
+
X
i;�

2�r 1
8
(m�)2[jV1(@�

�

i
)j+ jVn(@�

�

i
)j]

+
X

x2�n@�out

f�(m
�)

(3:38)

Proof: The proof of this estimate is obvious from the de�nition of mref and Lemma 3.6. Note

that in the terms eE
@��

i;out

�
m
@��

i;out
;m�c

�
the interaction energy between @��

i;out
and @��

i;in
is not

counted. }

Of course the con�guration mref does not contain the contour �. It remains to �nd a lower

bound on the energy of any con�guration m that does contain a contour with given e�.
To do this, we use the following observation.

Lemma 3.8: Let U; V;W � ZZd be any three disjoint sets such that for all y 2 U [ W ,P
x2U[W[V

J
`(x� y) = 1. and for any y 2 U
P

x2U[W
J
`(x� y) = 1 TheneEV [U[W (mV [U[W ;m(V [U[W )c) �

1
4

X
x2U

 x(m) + 1
2

X
x2U[W

[f�(mx) + f� (�x(m))]

+
X
x2V

f�(m
�)

(3:39)

Proof: The proof of this lemma is a simple, but, mainly because of boundary e�ects, somewhat

lengthy computation that we do not wish to reproduce here. To get the idea, note that in in�nite

volume we have (formally)

� 1
2

X
x;y

mxmyJ
`(x� y) + ��1
X
x

I(mx)

= � 1
2

X
x

mx�x(m) + ��1
X
x

I(mx)

=
X
x

�
(mx � �x(m))2

4
�
m2
x

4
�

(�x(m))2

4
+

1

2
��1I(mx) +

1

2
��1�x(I(m))

� (3:40)

where we have put �x(I(m)) =
P

y
J
`(x � y)I(my). The last line is obtained by inserting the

identity 1 =
P

y
J
`(x� y) in the I(m) term and changing the order of summation in the resulting

double sum. Using the same trick for the �rst term in the last line of (3.40), and using that, since

I is a convex function, �x(I(m)) � I(�x(m), one gets thatX
x

�
1

4
 x(m) +

1

2
f�(�x(m)) +

1

2
f�(mx)

�
(3:41)
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is a lower bound for (3.40). Trying to repeat this computation in �nite volume and carefully dealing

with the boundary terms leads to the more complicated looking formula (3.39). }

The main point in the estimate (3.39) is that it allows to bound the energy of a con�guration

from below in terms of �x(m) and  x(m) alone. Namely, taking for V and U [W the layers L�
i

and the regions \within" L�
i
, we see that for any con�guration

eE�

�
m�;m�c

�
�
X
i;�

eE
@��

i;out

�
m
@��

i;out
;m�c

�
+ 1

2

X
x2�n@�out

[f� (�x(m))� f�(m
�)] + 1

4

X
x2�n@�out

dist(x;@�out)>1=(
`)

 x(m)

+
X

x2�n@�out

f�(m
�)

(3:42)

Next we show that bot �x(m) and  x(m) has nice continuity properties.

Lemma 3.9: There exists a �nite constant cd depending only on the dimension d such that for

any contour �, if b� denotes the set

b� � �
y j dist(y; e�) � (�m�)2

8cd
`

�
(3:43)

then for all y 2 b�, jj�y(m)j �m�j �
�m

�

2
, or  x(m) �

(�m�)2

2
.

Proof: Since jmxj � 1, it is a simple geometric fact that

j�x(m)� �y(m)j � cdjx� yj
` (3:44)

and

j x(m)�  y(m)j � 4cdjx� yj
` (3:45)

for some geometry dependent constant cd. Since on e�, j�x(m)j � �m� or  x(m) � (�m�)2, the

assertion of the lemma follows. }

Remark: The estimates of Lemma 3.9 are very crude. We expect that they can be improved

considerably.

A further simple geometric consideration shows on the other hand that b� cannot be too small

compared to �, namely

Lemma 3.10: There exists a numerical constant c0
d
depending only on the dimension d such

that for any contour �, we have that

j�j � c0
d

(n+ 1)d

(�m�)2d
jb�j (3:46)
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Proof: Note that
j�j

jb�j is maximal if b� consists of a single point in which case (3.46) is obvious.}

Combining the upper bound on the energy of mref from Lemma 3.7 with the lower bound

(3.42) obtained from Lemma 3.8 applied for the optimal con�guration, using the fact that that E

and eE di�er only by a constant that depends only on boundary conditions, and �nally employing

Lemma 3.10 we arrive at

Proposition 3.11: Let � = (�;m) be a contour with �xed �. Then there exists a reference

con�guration mref in which � does not occur such that

E�

�
m�;m�c

�
�E�

�
mref

� ;mref

�c

�
�

1

8

c(�)

cd

(�m�)2d+2

(n+ 1)d
j�j � 1

8
(m�)22�nc(�)j�j (3:47)

where cd is a �nite dimension-dependent constant and c(�) is the constant from (3.24).

Proof: We bound E�(m�;m�c) from below by the the the corresponding energy of the con�gura-

tion m of lowest energy for given �; on the belt of the contour this provides a optimal con�guration

in the sense of De�nition 3.1. The same con�guration is used in the construction of mref . After

the obvious cancelations and using (3.46) and the fact that c(�) � 1, we get the assertion of the

proposition. }

We must now begin to choose our parameters. We want the Peierls condition, i.e. that the

coe�cient of j�j in (3.47) is positive and as large as possible. The most convenient choice appears

to choose n in such a way that

2�nc(�) =
1

2

c(�)(�m�)2d

cd(n+ 1)d
(3:48)

Calling the solution5of this equation n�, we get the Peierls estimate

E�

�
m�;m�c

�
�E�

�
m
ref

� ;m
ref

�c

�
�

1

16

c(�)(�m�)2d+2

cd(n+ 1)d
(3:49)

It is not di�cult to verify that

n� � C
1

c(�)
ln

�
c(�)(�m�)2d

2cd

�
(3:50)

for some numerical constant C, if c(�) is su�ciently small.

This estimate on the energy di�erence will only be useful for us if it is large compared to the

error terms arising from the block approximation. That is to say, we must make sure that

1

16

c(�)(�m�)2d+2

cd(n+ 1)d
> cd
` (3:51)

5 By this we will of course understand the smallest integer larger than or equal to the \real" solution
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(the two cd in this formula are a priori not the same quantities). This gives a relation between

temperature dependent quantities on the one hand and 
` on the other. It does not impose any

choice on the parameter `. This arises from the last condition, the comparison between the energy

of a contour and the entropy, i.e. the number of con�gurations m on � and of shapes � with �xed

volume j�j. Even the crudest estimate shows that this number is smaller than `dj�jCdj�j so that

(3.51) is complemented by the condition

�`d
�
1

16

c(�)(�m�)2d+2

cd(n+ 1)d
� cd
`

�
> d ln `+ lnC (3:52)

which requires ` to be su�ciently large. In fact we may choose ` as

` = 
�1
1

cd

1

32

c(�)(�m�)2d+2

cd(n+ 1)d
(3:53)

which inserted into (3.52) gives the �nal condition of � in terms of 
. It is clear that for any � > 1,

i.e. c(�) > 0 and m� > 0, this condition can be veri�ed by choosing 
 su�ciently small. Thus

using Lemma 2.2 we proved the analog of the Peierl's argument here, namely that the probability

of a given contour � is smaller than exp(�cj�jj ln `j) which in turn implies that the probability that

the origin is in the interior of a contour is close to zero (in fact of the order exp(�c�ndj ln `j)).

Moreover, by inserting the asymptotic behaviour of m� and c(�), one veri�es easily that if we put

� � 1 = 

1��

(2d+2)(1+1=d) (3:54)

for arbitrary � > 0, then (3.52) is veri�ed when 
 is su�ciently small. This gives thus the claimed

bound on the behaviour of the critical temperature as 
 tends to 0.

This concludes the proof of Theorem 1.}}

Remark: Let us recall some consequences of what we have just proven: if V denotes the union of

the interiors of all the contours of a given con�guration than the Gibbs probability of the event

dist(i; V c) � r (3:55)

is independent of the choice of the point i 2 ZZd and behaves like exp(�Cr) where C = C(�; 
).

This implies for example the following statement: The probability of the event that the support

of all contours surrounding a given point is in�nite is equal to zero. One could even re�ne such

a statement, giving a more precise meaning to the intuitive idea that \almost all con�gurations

(of the mesoscopic observables m) in the translation invariant + Gibbs ensemble have their local

averages (in the sense of the variables �x(m)) in the vicinity of m� except of some (rare, but

uniformly distributed throughout the lattice) \islands". (This is the appropriate rephrasing of the

statement in Sinai's book [S]).
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