We analyse the low temperature phase of ferromagnetic Kac-Ising models in
dimensions d≥2. We show that if the range of interactions is \g^{-1},
then two disjoint translation invariant Gibbs states exist, if the inverse
temperature \b satisfies \b -1\geq \g^\k where \k=\frac
{d(1-\e)}{(2d+1)(d+1)}, for any \e>0. The prove involves the blocking
procedure usual for Kac models and also a contour representation for the
resulting long-range (almost) continuous spin system which is suitable for the
use of a variant of the Peierls argument.Comment: 19pp, Plain Te