3,522 research outputs found

    The Exciting Lives of Giant Molecular Clouds

    Full text link
    We present a detailed study of the evolution of GMCs in a galactic disc simulation. We follow individual GMCs (defined in our simulations by a total column density criterion), including their level of star formation, from their formation to dispersal. We find the evolution of GMCs is highly complex. GMCs often form from a combination of smaller clouds and ambient ISM, and similarly disperse by splitting into a number of smaller clouds and ambient ISM. However some clouds emerge as the result of the disruption of a more massive GMC, rather than from the assembly of smaller clouds. Likewise in some cases, clouds accrete onto more massive clouds rather than disperse. Because of the difficulty of determining a precursor or successor of a given GMC, determining GMC histories and lifetimes is highly non-trivial. Using a definition relating to the continuous evolution of a cloud, we obtain lifetimes typically of 4-25 Myr for >10^5 M⊙_{\odot} GMCs, over which time the star formation efficiency is about 1 %. We also relate the lifetime of GMCs to their crossing time. We find that the crossing time is a reasonable measure of the actual lifetime of the cloud, although there is considerable scatter. The scatter is found to be unavoidable because of the complex and varied shapes and dynamics of the clouds. We study cloud dispersal in detail and find both stellar feedback and shear contribute to cloud disruption. We also demonstrate that GMCs do not behave as ridge clouds, rather massive spiral arm GMCs evolve into smaller clouds in inter-arm spurs.Comment: 15 pages, 16 figures, accepted for publication in MNRA

    Giant Molecular clouds: what are they made from, and how do they get there?

    Full text link
    We analyse the results of four simulations of isolated galaxies: two with a rigid spiral potential of fixed pattern speed, but with different degrees of star-formation induced feedback, one with an axisymmetric galactic potential and one with a `live' self-gravitating stellar component. Since we use a Lagrangian method we are able to select gas that lies within giant molecular clouds (GMCs) at a particular timeframe, and to then study the properties of this gas at earlier and later times. We find that gas which forms GMCs is not typical of the interstellar medium at least 50 Myr before the clouds form and reaches mean densities within an order of magnitude of mean cloud densities by around 10 Myr before. The gas in GMCs takes at least 50 Myr to return to typical ISM gas after dispersal by stellar feedback, and in some cases the gas is never fully recycled. We also present a study of the two-dimensional, vertically-averaged velocity fields within the ISM. We show that the velocity fields corresponding to the shortest timescales (that is, those timescales closest to the immediate formation and dissipation of the clouds) can be readily understood in terms of the various cloud formation and dissipation mechanisms. Properties of the flow patterns can be used to distinguish the processes which drive converging flows (e.g.\ spiral shocks, supernovae) and thus molecular cloud formation, and we note that such properties may be detectable with future observations of nearby galaxies.Comment: 13 pages, 8 figures, accepted for publication in MNRA

    The properties of clusters, and the orientation of magnetic fields relative to filaments, in magnetohydrodynamic simulations of colliding clouds

    Get PDF
    Funding: LD acknowledges funding from the European Research Council for the Horizon 2020 ERC consolida-tor grant project ICYBOB, grant number 818940.We have performed Smoothed Particle Magneto-Hydrodynamics (SPMHD) calculations of colliding clouds to investigate the formation of massive stellar clusters, adopting a timestep criterion to prevent large divergence errors. We find that magnetic fields do not impede the formation of young massive clusters (YMCs), and the development of high star formation rates, although we do see a strong dependence of our results on the direction of the magnetic field. If the field is initially perpendicular to the collision, and sufficiently strong, we find that star formation is delayed, and the morphology of the resulting clusters is significantly altered. We relate this to the large amplification of the field with this initial orientation. We also see that filaments formed with this configuration are less dense. When the field is parallel to the collision, there is much less amplification of the field, dense filaments form, and the formation of clusters is similar to the purely hydrodynamical case. Our simulations reproduce the observed tendency for magnetic fields to be aligned perpendicularly to dense filaments, and parallel to low density filaments. Overall our results are in broad agreement with past work in this area using grid codes.PostprintPeer reviewe

    Age distributions of star clusters in spiral and barred galaxies as a test for theories of spiral structure

    Full text link
    We consider models of gas flow in spiral galaxies in which the spiral structure has been excited by various possible mechanisms: a global steady density wave, self-gravity of the stellar disc and an external tidal interaction, as well as the case of a galaxy with a central rotating bar. In each model we estimate in a simple manner the likely current positions of star clusters of a variety of ages, ranging from ~ 2 Myr to around 130 Myr, depending on the model. We find that the spatial distribution of cluster of different ages varies markedly depending on the model, and propose that observations of the locations of age-dated stellar clusters is a possible discriminant between excitation mechanisms for spiral structure in an individual galaxy.Comment: 10 pages, 4 figures, accepted for publication in MNRA

    Simulations of spiral galaxies with an active potential: molecular cloud formation and gas dynamics

    Full text link
    We describe simulations of the response of a gaseous disc to an active spiral potential. The potential is derived from an N-body calculation and leads to a multi-armed time-evolving pattern. The gas forms long spiral arms typical of grand design galaxies, although the spiral pattern is asymmetric. The primary difference from a grand-design spiral galaxy, which has a consistent 2/4-armed pattern, is that instead of passing through the spiral arms, gas generally falls into a developing potential minimum and is released only when the local minimum dissolves. In this case, the densest gas is coincident with the spiral potential, rather than offset as in the grand-design spirals. We would there fore expect no offset between the spiral shock and star formation, and no obvious co-rotation radius. Spurs which occur in grand-design spirals when large clumps are sheared off leaving the spiral arms, are rare in the active, time-evolving spiral reported here. Instead, large branches are formed from spiral arms when the underlying spiral potential is dissolving due to the N-body dynamics. We find that the molecular cloud mass spectrum for the active potential is similar to that for clouds in grand design calculations, depending primarily on the ambient pressure rather than the nature of the potential. The largest molecular clouds occur when spiral arms collide, rather than by agglomeration within a spiral arm.Comment: 11 pages, 7 figures, accepted for publication in MNRA

    Why are most molecular clouds not gravitationally bound?

    Full text link
    The most recent observational evidence seems to indicate that giant molecular clouds are predominantly gravitationally unbound objects. In this paper we show that this is a natural consequence of a scenario in which cloud-cloud collisions and stellar feedback regulate the internal velocity dispersion of the gas, and so prevent global gravitational forces from becoming dominant. Thus, while the molecular gas is for the most part gravitationally unbound, local regions within the denser parts of the gas (within the clouds) do become bound and are able to form stars. We find that the observations, in terms of distributions of virial parameters and cloud structures, can be well modelled provided that the star formation efficiency in these bound regions is of order 5 - 10 percent. We also find that in this picture the constituent gas of individual molecular clouds changes over relatively short time scales, typically a few Myr.Comment: 9 pages, 8 figures, accepted for publication in MNRA
    • …
    corecore