137 research outputs found

    Experiencing Cultural Heritage Through Gamification: Mardin orphanage

    Get PDF
    This paper presents early-stage research about the role of gamification in experiencing cultural heritage strongly within the sociological context, specifically focusing on the transformation of the old orphanage located in the historical city center of Mardin. The study acknowledges the significance of the old orphanage as an architectural heritage exemplar, built of natural Mardin stone, situated within a unique historical and archaeological urban environment. However, it recognizes the challenges of preserving the building's heritage value, which necessitate surpassing the superficial restoration methods applied to adapt it into a hotel. The primary motivation of this research is to develop a method for creating a navigable and interactive virtual replica of the orphanage, centering on the processes and outcomes of transferring its heritage value. To achieve this, the paper initially outlines the documentation and analysis procedures employed, utilizing photogrammetry to capture the past and current states of the orphanage. Subsequently, participants engage with a gamified and realistic digital replica of the orphanage, involving task-based interactions and scenario-based experiences. The paper concludes by presenting preliminary results concerning participant reactions to the initial virtual model, delivered through a VR device. By raising awareness about the significance of restoring and preserving historical heritage, this study aims to positively impact the domains of tourism, education, and conservation. Furthermore, it intends to shed light on future research opportunities in the field of digital cultural heritage.International Technological Universit

    Angle Modulated Artificial Bee Colony Algorithms for Feature Selection

    Get PDF
    Optimal feature subset selection is an important and a difficult task for pattern classification, data mining, and machine intelligence applications. The objective of the feature subset selection is to eliminate the irrelevant and noisy feature in order to select optimum feature subsets and increase accuracy. The large number of features in a dataset increases the computational complexity thus leading to performance degradation. In this paper, to overcome this problem, angle modulation technique is used to reduce feature subset selection problem to four-dimensional continuous optimization problem instead of presenting the problem as a high-dimensional bit vector. To present the effectiveness of the problem presentation with angle modulation and to determine the efficiency of the proposed method, six variants of Artificial Bee Colony (ABC) algorithms employ angle modulation for feature selection. Experimental results on six high-dimensional datasets show that Angle Modulated ABC algorithms improved the classification accuracy with fewer feature subsets

    Possibility of Piezoelectric Sensor to Monitor Onshore Pipeline in Real Time Monitoring

    Get PDF
    Transportation oil and gas mostly used pipelines transportation. The condition of a pipeline must be continually monitored to ensure that defects do not cause it to fail and operate optimally. Pipeline has the possibility to experience defects during operations such as general corrosion, fatigue, crack, and others. Defects that occur in the pipeline during operation have serious consequences including loss of property, personal injury, or even loss of lives and serious ecological pollution. Awareness of the importance of conducting pipeline monitoring and safety issues for workers and residents around the pipeline site, emphasizes the importance of developing a technology for conducting pipeline monitoring activities in real time. The new technology for detecting metal defects is by using piezoelectric material. Based on laboratory scale, piezoelectric sensor can be applied to monitor pipeline defect. However, it is necessary challenges to scaling up in real application are following: (1) financial investment, (2) human behavior surrounding pipeline area, (3) receiving signal in long distance, (4) protection of piezoelectric sensor, (5) combination survey for future development

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    The potential of dry olive cake in a practical diet for juvenile hybrid tilapia, Oreochromis niloticus × Oreochromis aereus

    No full text
    A feeding trial of 84 days was carried out to evaluate the effects of olive cake (OC) on growth, feed utilization, digestibility of nutrient, haematological values and some blood chemistry parameters of juvenile hybrid tilapia (Oreochromis niloticus × Oreochromis aereus). Four diets were prepared including OC at levels of 0, 120, 240 and 360 g kg-1. Twenty fish per tank (initial weight 8.58 ± 0.09 g) were randomly distributed into 200-L fibreglass tanks. Final body weight and specific growth rate of fish fed with diets OC12 were not significantly different compared to fish fed with the control diet. The best feed conversion rate and protein efficiency rate were obtained from the fish fed with the control and OC12 diets. Growth performance, feed conversion rate and protein efficiency rate of fish fed diets with OC incorporation levels of more than 12 per cent tended to decrease significantly (P < 0.05) compared to the control and OC12 diet groups. The apparent digestibility coefficients (ADC) of dry matter significantly decreased (P < 0.05) with the increase of dietary OC levels, whereas the ADC of protein was not affected by dietary treatment. The ADC of lipid of fish fed with control and OC12 diets were significantly (P < 0.05) higher than those of fish fed with OC24 and OC36 diets. Mean corpuscular haemoglobin, cholesterol and triglycerides were affected by dietary OC level. The findings of this study show that OC can be incorporated to diets of juvenile hybrid tilapia up to 120 g kg-1 without any adverse effect on fish growth and feed utilization. © 2015 John Wiley & Sons Lt

    Effect of ZnO type and concentration on the mophology, thermal, and mechanical properties of poly(ether ester)/ZnO composites

    No full text
    Poly(ether ester) (PEE) copolymers were synthesized in a two-stage process involving transesterification and polycondensation. The synthesized copolymer and the zinc oxide (ZnO) were used in composite preparation by melt compounding. The influence of ZnO type and concentration on the morphology, thermal and mechanical properties of the composites were studied. DSC and XRD analyses indicated that crystallinity of composites was slightly reduced with ZnO content. Homogeneous dispersion of fillers in the polymer matrix was observed through morphological analyses. While in general tensile strength and elongation at break values of the composites decreased with increasing ZnO content, elastic modulus values increased with the addition of ZnO. Moreover, ZnO particles were modified with poly(N-vinyl pyrrolidone) and a slight improvement in mechanical properties was observed, respectively over the composites containing unmodified particles. (c) 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 201

    Influence of Zinc Oxide on Thermoplastic Elastomer-Based Composites: Synthesis, Processing, Structural, and Thermal Characterization

    No full text
    It was aimed to investigate how thermal conductivity and stability properties of synthesized thermoplastic elastomers were influenced by zinc oxide (ZnO) additives which differed in size and surface treatment. ZnO particles were prepared by the homogeneous precipitation method by mixing aqueous solutions of hexamethylenetetramine (HMT) and zinc nitrate. The obtained particles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Poly(vinyl pyrrolidone) (PVP) was used as a modifier to reduce aggregation among the ZnO particles. The composites, prepared by melt compounding method, were characterized in terms of their morphology and thermal properties. Uniformly distributed surface treated particles caused an enhancement in thermal conductivity properties. At 10 wt% ZnO concentration the thermal conductivity of composite reached 1.7 W/mK compared with 0.3 W/mK for the neat polymer. At the same filler loading, ZnO nanoparticles exhibited a greater effect on thermal conductivity compared with submicron sized particles. It was found that the coefficient of thermal expansion of composites decreased at low temperature (55 degrees C) with increasing ZnO content. Thermal gravimetric analysis (TGA) showed that the neat polymer and the composites were resistant up to 340 degrees C without significant mass loss. (C) 2015 Society of Plastics Engineer
    corecore