224 research outputs found

    Magnetic field reversals and long-time memory in conducting flows

    Get PDF
    Employing a simple ideal magnetohydrodynamic model in spherical geometry,we show that the presence of either rotation or finite magnetic helicity is sufficient to induce dynamical reversals of the magnetic dipole moment. The statistical character of the model is similar to that of terrestrial magnetic field reversals, with the similarity being stronger when rotation is present.The connection between long time correlations, 1/f1/f noise, and statistics of reversals is supported, consistent with earlier suggestions.Comment: accepted in Physical Review

    Test-particle acceleration in a hierarchical three-dimensional turbulence model

    Get PDF
    The acceleration of charged particles is relevant to the solar corona over a broad range of scales and energies. High-energy particles are usually detected in concomitance with large energy release events like solar eruptions and flares, nevertheless acceleration can occur at smaller scales, characterized by dynamical activity near current sheets. To gain insight into the complex scenario of coronal charged particle acceleration, we investigate the properties of acceleration with a test-particle approach using three-dimensional magnetohydrodynamic (MHD) models. These are obtained from direct solutions of the reduced MHD equations, well suited for a plasma embedded in a strong axial magnetic field, relevant to the inner heliosphere. A multi-box, multi-scale technique is used to solve the equations of motion for protons. This method allows us to resolve an extended range of scales present in the system, namely from the ion inertial scale of the order of a meter up to macroscopic scales of the order of 1010\,km (1/1001/100th of the outer scale of the system). This new technique is useful to identify the mechanisms that, acting at different scales, are responsible for acceleration to high energies of a small fraction of the particles in the coronal plasma. We report results that describe acceleration at different stages over a broad range of time, length and energy scales.Comment: 12 pages, 8 figures, ApJ (in press

    Hall-MHD small-scale dynamos

    Get PDF
    Much of the progress in our understanding of dynamo mechanisms has been made within the theoretical framework of magnetohydrodynamics (MHD). However, for sufficiently diffuse media, the Hall effect eventually becomes non-negligible. We present results from three dimensional simulations of the Hall-MHD equations subjected to random non-helical forcing. We study the role of the Hall effect in the dynamo efficiency for different values of the Hall parameter, using a pseudospectral code to achieve exponentially fast convergence. We also study energy transfer rates among spatial scales to determine the relative importance of the various nonlinear effects in the dynamo process and in the energy cascade. The Hall effect produces a reduction of the direct energy cascade at scales larger than the Hall scale, and therefore leads to smaller energy dissipation rates. Finally, we present results stemming from simulations at large magnetic Prandtl numbers, which is the relevant regime in hot and diffuse media such a the interstellar medium.Comment: 11 pages and 11 figure

    Efficient spin control in high-quality-factor planar micro-cavities

    Get PDF
    A semiconductor microcavity embedding donor impurities and excited by a laser field is modelled. By including general decay and dephasing processes, and in particular cavity photon leakage, detailed simulations show that control over the spin dynamics is significally enhanced in high-quality-factor cavities, in which case picosecond laser pulses may produce spin-flip with high-fidelity final states.Comment: 6 pages, 4 figure

    Rapid directional alignment of velocity and magnetic field in magnetohydrodynamic turbulence

    Get PDF
    We show that local directional alignment of the velocity and magnetic field fluctuations occurs rapidly in magnetohydrodynamics for a variety of parameters. This is observed both in direct numerical simulations and in solar wind data. The phenomenon is due to an alignment between the magnetic field and either pressure gradients or shear-associated kinetic energy gradients. A similar alignment, of velocity and vorticity, occurs in the Navier Stokes fluid case. This may be the most rapid and robust relaxation process in turbulent flows, and leads to a local weakening of the nonlinear terms in the small scale vorticity and current structures where alignment takes place.Comment: 4 pages, 6 figure

    Apparent suppression of turbulent magnetic dynamo action by a dc magnetic field

    Full text link
    Numerical studies of the effect of a dc magnetic field on dynamo action (development of magnetic fields with large spatial scales), due to helically-driven magnetohydrodynamic turbulence, are reported. The apparent effect of the dc magnetic field is to suppress the dynamo action, above a relatively low threshold. However, the possibility that the suppression results from an improper combination of rectangular triply spatially-periodic boundary conditions and a uniform dc magnetic field is addressed: heretofore a common and convenient computational convention in turbulence investigations. Physical reasons for the observed suppression are suggested. Other geometries and boundary conditions are offered for which the dynamo action is expected not to be suppressed by the presence of a dc magnetic field component.Comment: To appear in Physics of Plasma

    Statistical properties of solar wind discontinuities, intermittent turbulence, and rapid emergence of non-Gaussian distributions

    Get PDF
    Recent studies have compared properties of the magnetic field in simulations of Hall MHD turbulence with spacecraft data, focusing on methods used to identify classical discontinuities and intermittency statistics. Comparison of ACE solar wind data and simulations of 2D and 3D turbulence shows good agreement in waiting‐time analysis of magnetic discontinuities, and in the related distribution of magnetic field increments. This supports the idea that the magnetic structures in the solar wind may emerge fast and locally from nonlinear dynamics that can be understood in the framework of nonlinear MHD theory. The analysis suggests that small scale current sheets form spontaneously and rapidly enough that some of the observed solar wind discontinuities may be locally generated, representing boundaries between interacting flux tubes

    A turbulence-driven model for heating and acceleration of the fast wind in coronal holes

    Get PDF
    A model is presented for generation of fast solar wind in coronal holes, relying on heating that is dominated by turbulent dissipation of MHD fluctuations transported upwards in the solar atmosphere. Scale-separated transport equations include large-scale fields, transverse Alfvenic fluctuations, and a small compressive dissipation due to parallel shears near the transition region. The model accounts for proton temperature, density, wind speed, and fluctuation amplitude as observed in remote sensing and in situ satellite data.Comment: accepted for publication in ApJ

    Energy spectrum of turbulent fluctuations in boundary driven reduced magnetohydrodynamics

    Full text link
    The nonlinear dynamics of a bundle of magnetic flux ropes driven by stationary fluid motions at their endpoints is studied, by performing numerical simulations of the magnetohydrodynamic (MHD) equations. The development of MHD turbulence is shown, where the system reaches a state that is characterized by the ratio between the Alfven time (the time for incompressible MHD waves to travel along the field lines) and the convective time scale of the driving motions. This ratio of time scales determines the energy spectra and the relaxation toward different regimes ranging from weak to strong turbulence. A connection is made with phenomenological theories for the energy spectra in MHD turbulence.Comment: Published in Physics of Plasma
    corecore