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Abstract.

Recent studies have compared properties of the magnetic field in simulations of Hall MHD turbulence with spacecraft data,
focusing on methods used to identify classical discontinuities and intermittency statistics. Comparison of ACE solar wind data
and simulations of 2D and 3D turbulence shows good agreement in waiting-time analysis of magnetic discontinuities, and in
the related distribution of magnetic field increments. This supports the idea that the magnetic structures in the solar wind may
emerge fast and locally from nonlinear dynamics that can be understood in the framework of nonlinear MHD theory. The
analysis suggests that small scale current sheets form spontaneously and rapidly enough that some of the observed solar wind

discontinuities may be locally generated, representing boundaries between interacting flux tubes.

1. BACKGROUND

A well known feature of solar wind observations is
the appearance of sudden changes in the magnetic field
vector. These changes are mainly directional, not in
magnitude, and are detected throughout the heliosphere
[3,21, 22, 27]. Changes are often seen at time scales of 3
to 5 minutes, although similar discontinuities are seen at
smaller time increments [28]. A familiar interpretation
is that these are classical ideal magnetohydrodynamic
(MHD) discontinuities [3, 22, 27], a view consistent with
the interpretation that other MHD scale fluctuations are
noninteracting Alfvén waves. An alternative viewpoint is
that both the fluctuations and discontinuities are facets of
a nonlinear MHD cascade [1, 23], and that these are in-
teracting, not passive, and contribute, e.g., to heating of
the interplanetary plasma. In the former view the inter-
planetary medium evolves very little, and its features can
be traced back to features in the lower corona, possibly
even to the photosphere [2]. Here we review and discuss
observational and theoretical issues related to interplane-
tary discontinuities, making comparisons with moderate
to high Reynolds number MHD simulations. We find that
methods for identifying classical discontinuities and for
computing quantities related to intermittency are closely
related. These approaches give very similar results when
used as a basis for identifying “events” in either simula-
tion data or in ACE solar wind magnetic field data. In the

simulations, we find that the typical events are connected
with current sheets that form between adjacent magnetic
flux tubes. Indeed this is consistent with the fact that the
solar wind exhibits many properties associated with in-
termittent turbulence [4, 6, 16, 17, 25], but the question
persists as to whether these properties arise locally or if
they are remnants of coronal processes (e.g., [2]). Here
we will argue that coherent structures and therefore dis-
continuities can arise rapidly, and we suggest that at least
some of the observed interplanetary discontinuities are
formed locally.

2. CELLULARIZATION, TURBULENCE
AND DISCONTINUITIES

The presence of discontinuities in the observed interplan-
etary magnetic field is suggestive of some kind of inter-
nal boundaries in the plasma. But there are other indi-
cations as well. A particularly intriguing example is the
phenomenon of "dropouts" in solar energetic particle ob-
servations. In these sporadic events the intensity of en-
ergetic particles suddenly turns off, and on again, some-
times repeatedly within a few hours of data[19]. These
observations may appear to be at odds with estimates
of rates of perpendicular diffusion of energetic particles,
but it transpires that considerations of the structure of
the turbulent coronal and interplanetary magnetic field
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[11, 12] can reconcile the observations with ideas of par-
ticle diffusion. In particular [11] turbulent magnetic flux
tubes that occur in highly anisotropic (nearly 2D) turbu-
lence models can provide trapping centers that prevent
some magnetic field lines, those near strong magnetic
O-points, from escaping. Particles with gyrocenters on
these field lines may experience a delayed escape, pro-
ducing steep gradients and a delay in attaining asymp-
totic diffusive transport. In this view, diagnostics that de-
scribe SEP dropouts [19] are providing us with pictures
of the cellularized interplanetary magnetic field.

Here we will examine the occurrence and generation
of internal magnetic boundaries. The main diagnostics
we examine will describe properties of the magnetic field
B =By +b which is assumed to consist of a mean part By
and a fluctuation b. The former may vary slowly in space
while b is a complex turbulent field that varies in space
and time. To describe rapid changes in the magnetic field,
we look at the increments AB; = B(s + As) — B(s) at
points in space separated by As along some trajectory.
When s is an inertial range separation, the increments
have properties characteristic of the inertial range of
turbulence[20]. A slightly more economical description,
and one that relates well to discontinuity analysis is
obtained by looking at the time series and statistics of
the magnitude of the vector increments,

|AB| = [B(s + As) — B(s) (1)
again separated by As and we now suppress the argument
s where convenient.

In Fig. 1 we show two samples of time series of |AB|,
one obtained from a 3D spectral method simulation of
MHD by sampling along diagonals and another obtained
from interplanetary magnetic field data measured by the
ACE spacecraft [13, 14]. Comparable numbers of corre-
lation scales are shown for each. It is apparent that both
datasets are spiky, and the events that might be identi-
fied as discontinuities are evident. While discontinuities
are sometimes picked out using more elaborate methods
(e.g., [28]), the baseline property that there is a large sud-
den change of direction, can be associated with a simple
cutoff or threshold applied to the datasets shown in the
Figure.

In the case of the simulation data it is possible to un-
ambiguously identify what structures are associated with
these discontinuity “events.” This is particularly straight-
forward in two dimensions (2D), as illustrated in Fig. 2.
This illustrates field lines and intensity of electric current
density for a 2D incompressible MHD simulation of fully
developed turbulence. It is a decaying turbulence run at
moderate Reynolds number ( a few thousand) carried out
with a very accurate and well resolved 5122 Fourier pseu-
dospectral code. The picture, showing the system after
just a few eddy turnover times, displays many magnetic

203

PVISIM

500 750 1000

s/h.

®) |

PVI ACE

ikl S oA i
%50 ‘ 1000

time/t,

FIGURE 1. (color online) Time/space series of the magni-
tude of magnetic vector increments computed from solar wind
ACE data and MHD simulation. In both cases data is acquired
along a linear path (in solar wind using frozen-in flow) and
normalized to the respective correlation scales. Here the scales
are roughly comparable in terms of correlation scales, and the
appearance of the datasets is similar, with spiky changes seen
in both cases.

islands, some of which are reconnecting with a nearest
neighbor. Many of the islands are also bordered by strong
sheets of electric current density. When these are sam-
pled by crossing them, the result appears as a tangential
discontinuity (TD) for inertial range increments. (Note
that the current sheets thicknesses are at around the dis-
sipation scale.) None of these features were present in
the initial data (not shown) in which the electric current
is not concentrated but rather is randomly distributed by
construction.

This observation of the generation of current sheets
and their connection to TDs that can be “observed” in
simulations leads naturally to the question of whether
there might be a similar origin of discontinuities in so-
lar wind turbulence. This question has been examined in
some detail [13] by looking at the distribution of waiting
times between discontinuity events identified either by
classical methods (designated “TS”) or by a threshold on
the value of |AB| normalized to its own variance (desig-
nated PVI”). The latter quantity is related to statistics that
describe intermittency in turbulence. Greco et al found
that the two methods performed almost interchangeably
—most of the same events were identified and the waiting
time distributions were almost identical.

Next Greco et al [14] applied these method to com-
pare statistics of simulations and statistics of solar wind
ACE magnetic field data. Use of a normalization of the
increments to the variance [7, 25] facilitates and clarifies
these comparisons. It transpires that the normalized wait-
ing time distributions between events (using either TS or
PVI) were extremely similar in the solar wind and simu-
lation datasets at (inertial range) separations shorter than
the correlation scale. At larger separations the distribu-
tions differ.



FIGURE 2. A contour map of field lines with superposed
gray-shade plot of electric current density, from 2D MHD
simulation. Strong current regions (very dark and very light
regions) are frequently found between adjacent magnetic flux
tubes, inducing a cellular structure. This feature is very clear in
2D and is present but more complex in 3D simulations. These
current sheets appear as tangential discontinuities in the data
samples, as in Fig. 1. It seems reasonable to suppose that a
similar cellularization and origin of discontinuities might take
place in the solar wind. Single spacecraft data cannot provide
an unambiguous direct answer to this question.
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FIGURE 3. (color online) Probability distribution of mag-

netic increments from ACE data and both 2D and 3D sim-
ulations. Labels designate (I) super-Gaussian core, (II) sub-
Gaussian wings and (III) super-Gaussian tails.

3. NON-GAUSSIAN STATISTICS

The same study [14] also found that probability distribu-
tions (PDFs) of the normalized (component) increments
also compare well. See Fig. 3, which illustrates PDFs of
inertial range increments from 2D and 3D simulations,
and ACE magnetic field data. A crucial point to real-
ize is that the events that are identified as discontinuity
events in either TS or PVI methods are associated with
the tails of these distributions. The only technical differ-
ence is that PVI employs a threshold on the magnitude
|AB| while the PDFs shown here are those of a carte-
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FIGURE 4. (color online) Magnetic islands from 2D simu-
lation with region III, the super-Gaussian tails, shaded in. The
shaded regions correspond to the current sheets between flux
tubes, as in Fig. 1.

sian component component ABy. The distributions are
remarkably similar, with cross-overs between sub- and
super-Gaussian regions occurring at very nearly the same
value of normalized separation.

In Fig. 3 we also suggest a classification into (I) super-
Gaussian core, (II) sub-Gaussian wings at intermediate
values, and (III) super-Gaussian tails. We can then ask
the question: where are the super-Gaussian tails coming
from? In the case of the 2D simulations this is readily ad-
dressed by masking region III and visualizing the results.
Fig. 4 shows that Region III is due to the current sheets
that form between the flux tubes. These current sheets
represent the well-known small scale coherent structures
of MHD turbulence [8, 18, 24, 29] that are linked to the
magnetic field intermittency.

The issue of whether discontinuities and current sheets
can form due to turbulence in the solar wind depends on
whether sufficient time passes for their formation. In the
simulations described above the MHD system was exam-
ined after a few nonlinear times, beginning from a ran-
dom phase initial condition with no coherent structures.
For the solar wind case, one may easily estimate the num-
ber of nonlinear times (or age) in passing to 1AU. We
can base this on a fluctuation strength of v =10-20 km/s,
a correlation length of L =0.01 AU, and an average solar
wind speed of Vi, =400 km/s. A simple nonlinear time
scale is L/v and the transit time to position R in the helio-
sphere is R/Vj,. Therefore the age of the turbulence at 1
AU is about (v/L)(R/ Vs, ) & 2 to 4 nonlinear times. Even
though this is probably somewhat of an overestimate due
to effects of Alfvénicity, it appears that the turbulence has



time to become fully developed in transit to 1 AU. This is
a familiar conclusion, for example due to the frequent
observation of features such as Kolmogoroft-like power
spectra. However recent studies make it clear that some
features of turbulent relaxation occur locally, on the scale
of typical flux tubes, and rapidly, on the time scale of a
fraction of a global nonlinear time scale[24]. In particu-
lar the formation of strong boundaries of current sheets
between flux tubes seems to be a rapid process.

To make this point even more strongly, we note that
another recent study [30] finds that non-Gaussian statis-
tics emerge very rapidly from band -limited initial con-
ditions, and that this process is essentially ideal. There-
fore the effects that drive the formation of the character-
istic coherent structures (i.e., the current sheets) are ideal,
nonlinear and very rapid. The key processes that can gen-
erate discontinuities and flux tube boundaries can act in
less than a nonlinear time. This means that in transit to
1AU the solar wind should generate non-Gaussian fea-
tures, including current sheets.

4. CONCLUSIONS

We can draw a firm conclusion for the numerical exper-
iments, that the discontinuity events are formed sponta-
neously due to nonlinear couplings, cascade and turbu-
lence. They were not present in the initial data. The ex-
tension of this conclusion to the solar wind is tempting,
but remains uncertain.

It seems likely that in 3D solar wind turbulence, inter-
mittency and the associated coherent structures and cur-
rent sheets will have time to form. One might conclude
that, while some features related to interplanetary mag-
netic boundaries may survive in transit over 1 AU [2], at
least some of these features are probably generated by in
situ processes. However the mix of remnant TD/current
sheets and turbulence-generated TDs/current sheets re-
mains an incompletely understood question. It remains of
importance however, in understanding the near-earth so-
lar connection, predictability in space weather, solar en-
ergetic particles, and other observational features of the
Geospace environment.

Finally we note that coherent structures and intermit-
tency of the type that we analyzed here can also be inves-
tigated using more advanced techniques, such as those
related to multifractal analysis [9], and direct measures
of phase coherence [10, 15].
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