
PHYSICAL REVIEW E 90, 043010 (2014)

Magnetic field reversals and long-time memory in conducting flows
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Employing a simple ideal magnetohydrodynamic model in spherical geometry, we show that the presence
of either rotation or finite magnetic helicity is sufficient to induce dynamical reversals of the magnetic dipole
moment. The statistical character of the model is similar to that of terrestrial magnetic field reversals, with the
similarity being stronger when rotation is present. The connection between long-time correlations, 1/f noise,
and statistics of reversals is supported, consistent with earlier suggestions.
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I. INTRODUCTION

The origin of magnetic field reversals in Earth’s magnetic
field is a matter of debate. Reversals take place rapidly, within
a scale of ∼1000 years, but infrequently, distanced apart by
periods of 104–107 years [1,2].

Reversals, first thought to be a purely random process, are
now known to display long-term memory with deviations from
a purely Poisson process [3]. In many systems, such a high
degree of variability may be associated with features of the
power spectrum of the time series known as “1/f ” noise, an
indication of the presence of correlations over a wide range of
time scales [4–7]. 1/f signals are found in many physical
systems [8,9], including the intensity of the geomagnetic
field [10,11]. We examine this phenomenon by employing
a simple model consisting of incompressible nondissipative
magnetohydrodynamics (MHD) in spherical geometry. The
results demonstrate the presence of reversals possessing 1/f

noise where rotation and/or magnetic helicity play important
roles. Remarkably, the distribution of waiting times between
reversals follows a power law that is comparable to the record
of terrestrial magnetic reversals.

Earth’s magnetic field is sustained by a dynamo process:
Motions of the conducting fluid core generate and sustain
magnetic fields against Ohmic dissipation. Although MHD
contains the basic physics of the dynamo, the complete
terrestrial problem requires solving either compressible,
Boussinesq, or anelastic MHD equations for the velocity, the
magnetic field, and the temperature, in a spherical shell with
a possible inner solid conducting core, and surrounded by a
mantle [12,13]. Additional realism requires more complexity
in chemistry, equations of state, and boundary conditions.
Even with advanced supercomputers, only few reversals can
be simulated [12–14], and studies of the long-time statistics of
reversals are therefore out of reach.

Experiments reproducing dynamos in laboratory turbulent
flows display magnetic field reversals [15,16], 1/f noise, and
long-term memory. Still, a theoretical understanding of these
features remains incomplete since the origin of correlations
with time scales much greater than the characteristic nonlinear
time associated with the largest eddies in the system is
unknown.

Many physical causes have been considered to explain the
origin and statistics of the reversals, including the effect of
tides, departures of the mantle from spherical geometry, or low
magnetic Reynolds number effects. We show that the MHD
equations in their simplest nonlinear form (incompressible
and ideal) in a simple geometry (spherical surrounded by a
perfect conductor) already include the ingredients required for
magnetic field reversals, long-time correlations, 1/f noise,
and non-Poisson statistics compatible with that observed in
the geodynamo.

II. MODEL

The ideal MHD equations are solved using a spectral
method that preserves to numerical accuracy all ideal quadratic
invariants with no numerical dissipation or dispersion. For very
long-time integrations, this is the only method that ensures
adequate conservation. Since the initial energy introduced in
the system is conserved, no external forces are needed to
sustain the velocity and magnetic fields. For a purely spectral
Galerkin method, we use spherical Chandrasekhar-Kendall
functions as a basis, expanding the fields in spectral space
[17,18]. A fourth-order Runge-Kutta method is used to evolve
the system in time.

With the magnetic field confined in the interior of the
sphere, the system has two quadratic conserved quantities: the
total energy (kinetic plus magnetic, E = 1

2

∫ |v|2 + |b|2 dV ,
with v, b the velocity and magnetic fields) and the magnetic
helicity (Hm = ∫

a · b dV , a measure of linkage or handedness
of the magnetic field, with a the vector potential, ∇×a = b).
E is transferred towards small scales (“direct cascade”), while
Hm is transferred towards large scales (“inverse cascade”).
In the ideal system, Hm condenses at the largest available
scales [19]. In our simulations, long-time-scale correlations
arise when Hm is nonzero. Long-time correlations also arise
due to symmetry breaking by rotation [20]. Here we show for
the rotating sphere that the magnetic dipole moment reverses
with respect to the rotation direction, displaying 1/f noise
and long-term memory even when the magnetic helicity is
zero. A recent related study [21] reported persistence of the
magnetic dipole associated with broken ergodicity effects [22].
Broken ergodicity of fluid systems may also be viewed as
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“delayed ergodicity” in which very long-time correlations
delay ergodically covering the phase space [23].

The incompressible ideal MHD equations solved for the
evolution of the velocity field v and magnetic field b (in
Alfvenic units) are

∂v
∂t

= v×ω + j×b − ∇
(
P + v2

2

)
− 2�×v, (1)

∂b
∂t

= ∇×(v×b), (2)

for vorticity ω = ∇×v; electric current density j = ∇×b;
normalized pressure P; and rotation rate �. The units are
normalized to the spherical radius R and initial root mean
square velocity v0 = 〈v2〉1/2, so R = 1 and v0 = 1, and the
time unit is t0 = R/v0 = 1 (later time scales are rescaled to
Ma = 106 years, based on the longest observed waiting time
between reversals). We consider vanishing normal velocity
and magnetic field components at the sphere boundary. For
the simulations, 980 coupled Chandrasekhar-Kendall (C-K)
modes are followed in time. The C-K functions are

Ji = λ∇×rψi + ∇×(∇×rψi), (3)

where we work with a set of spherical orthonormal unit
vectors (r̂ ,θ̂ ,φ̂), and the scalar function ψi is a solution of
the Helmholtz equation, (∇2 + λ2)ψi = 0. The explicit form
of ψi is

ψi(r,θ,φ) = Cql jl(|λql|r)Ylm(θ,φ), (4)

where jl(|λql|r) is the order-l spherical Bessel function of
the first kind, {λql} are the roots of jl indexed by q (so that
the function vanishes at r = 1), and Ylm(θ,φ) is a spherical
harmonic in the polar angle θ and the azimuthal angle φ.
The subindex i is a shorthand notation for the three indices
(q,l,m); q = 1,2,3, . . . corresponds to the positive values of λ,
and q = −1,−2,−3, . . . indexes the negative values; finally
l = 1,2,3, . . . , and −l � m � l. The C-K functions satisfy

∇×Ji = λiJi . (5)

With the proper normalization constants, they are a complete
orthonormal set. The values of |λi | play a role similar to
the wave number k in a Fourier expansion. Note that the
boundary conditions, as well as the Galerkin method to solve
the equations inside the sphere using this base, were chosen to
ensure conservation of all quadratic invariants of the system
(total energy and magnetic helicity).

The initially excited modes for the runs are those for
q = ±3, l = 3 and all possible values of m. With proper initial
values for the expansion coefficients of the C-K functions, the
initial values of the quadratic quantities can be chosen. In all
the runs, the initial total energy is set to E = 1 (dimensionless
units). We set the initial magnetic and kinetic energies to
Em = Ek ≈ 0.5. The runs with nonzero magnetic helicity have
Hm ≈ 0.03. As a comparison, note that for the q = 3, l = 3
mode alone, Hm/Em is no more than about 0.072 (this is
the maximum value of |Hm/Em| if only modes with |q| = 3,
l = 3, and one sign of λ are excited). So, the chosen value
of Hm (when is nonzero) corresponds to about 85% of the
maximum helicity in the system.

FIG. 1. (Color online) The ratio of kinetic energy vs magnetic
energy Ek/Em as a function of time, for three runs with different initial
conditions and same Hm = 0.03, � = 16. Thicker line (black online)
Ek/Em(t = 0) = 1, intermediate thick line (red online) Ek/Em(t =
0) = 0.5, and thin line (blue online) Ek/Em(t = 0) = 2.

III. RESULTS

A. Kinetic and magnetic energy, field structure

The values of the total energy E and magnetic helicity
remain constant in time (as ideal invariants). The values of the
magnetic and kinetic energies Em and Ek fluctuate, reaching
a statistical steady state after about 20 unit times. The initial
ratio of kinetic over magnetic energy is Ek/Em(t = 0) = 1
and approaches and fluctuates around Ek/Em ≈ 0.9. We per-
formed two additional runs starting from different initial ratios
Ek/Em(0) ≈ 2 and Ek/Em(0) ≈ 0.5, with the same value of
magnetic helicity Hm = 0.03. Both cases evolve initially and
after about 20 unit times reach the same asymptotical statistical
state, with a value of Ek/Em ≈ 0.9. This is shown in Fig. 1.
This asymptotic value corresponds to a steady state with
some excess of magnetic energy over kinetic energy which is
consistent with the nonzero value of magnetic helicity (which
allows condensation at the large scales).

The results about the statistics of the magnetic dipole that
follows (next subsection) are not sensitive to the different
initial values of the ratio Ek/Em.

The fields evolve to a highly disordered state, with a wide
range of scales present. Figure 2 shows velocity and magnetic
field lines for one particular run.

B. Magnetic dipole and statistics of reversals

We focus on the dynamics of the magnetic dipole moment,

μ = 1

2

∫
r×j dV, (6)

and, in particular, on its z component μz, which is of
importance with rotation � = �ẑ. We report first results of
a run with both nonzero magnetic helicity (Hm = 0.03) and
nonzero rotation (� = 16 in units of t−1

0 defined above).
Figure 3 (top panel) shows the time evolution of the z
component of the dipole moment μz. The simulation extends
for 5000t0 but for clarity only the segment from t = 50 to
t = 300 is illustrated. The sign of μz changes many times
during this period; many reversals are observed. The time
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FIG. 2. (Color online) Velocity (top) and magnetic (bottom) field
lines in the run with � = 16, Hm = 0.03. The field lines change color
according to the intensity of the field, from red to yellow, blue, and
magenta. The red, green, and blue arrows indicate, respectively, the
x,y,z axis, with � in the z direction.

periods between reversals range from short times (δt ∼ 1) to
long times (δt ∼ 50).

The statistics of these fluctuations are analyzed by com-
puting the frequency power spectrum P (f ), shown in Fig. 4
(top). The spectrum is obtained by Fourier transforming the
μz(t) time series in 10 nonoverlapping samples, averaging
the estimates of P (f ) to improve statistics. The frequency
f = 0.5 corresponds to the longest nonlinear time scale that
can be constructed based on local dimensional arguments,
using the longest available scale in the system 2R, and a unit
root mean square velocity. For a system with no long-term
memory effects, P (f ) would be flat (constant) at lower
frequencies, corresponding to uncorrelated fluctuations at time
scales longer than the autocorrelation time tc = 2R/v0 =
2. However, the substantial excess power at frequencies
f < 1/tc = 0.5 indicates a long-term memory not controlled
by a single correlation time. This effect is known as 1/f

noise, corresponding to the typical (approximate) power-law
spectrum found at the low frequencies [5,9]. A 1/f power law
is illustrated in Fig. 4. The appearance of 1/f noise in ideal
fluid models has been discussed in [24]. The inset included
in Fig. 4 corresponds to the compensated spectrum, that is,
f P (f ), which should be flat for a 1/f spectrum. This plot
indicates clearly the wide range of frequencies for which we
can see a 1/f in this case.

To quantify reversals, we compute statistical distribution of
times between reversals of μz, i.e., the waiting time distribution

FIG. 3. Time series of the normalized magnetic dipole moment
for four different values of the angular velocity of rotation � and
magnetic helicity Hm. Time is measured in units of Ma (mega anni),
1 Ma = 106 years, as indicated in the text.

[3]. The probability distribution function (PDF) of the waiting
times obtained from the simulation is shown in Fig. 5 (top).
Also shown in Fig. 5 is the known distribution of waiting
times from data measurements of the geomagnetic reversals
in [1]. To compare these, we arbitrarily identify the longest
simulation waiting time with the longest reported waiting
time for geomagnetic reversals. The latter is ∼30 Ma. The
relevant point here is that the same trend is observed for the
waiting times—this corresponds to a power law, indicating
the existence of long-term memory and non-Poissonian statis-
tics [3,25]. This long-term memory is associated with the 1/f

noise observed in the power frequency spectrum (Fig. 4).
Next, we show results with nonzero magnetic helicity Hm =

0.03 but no rotation (� = 0). The dipole moment time series,
frequency spectrum and waiting time distribution are shown in
the second panels of Figs. 3, 4, and 5, respectively. Although
the frequency spectrum shows that there is still an excess power
at f < 1/tc, this effect is weaker than in the case with both
rotation and magnetic helicity. The compensated spectrum in
the inset of this figure also indicates the range of frequencies
for which a 1/f is observed. In addition, the distribution of
waiting times departs more from the observational data of
Cande and Kent 1995 [1].

Results with zero magnetic helicity (Hm = 10−7) and
maintaining rotation (� = 16) are shown in the third panels of
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FIG. 4. Frequency spectra of the magnetic dipole moment for four
different values of the angular velocity of rotation � and magnetic
helicity Hm. A f −1 power-law spectrum is indicated as a reference
in each plot. Also, insets show the compensated spectra f P (f ) for
each case. Units of frequency are 1/Ma, 1 Ma = 106 years.

Figs. 3, 4, and 5, respectively. These results are similar to the
first case of nonzero rotation and magnetic helicity, showing
excess power at low frequencies (Fig. 4), flat compensated
spectrum (inset), and comparable results with the observa-
tional data for the waiting time distribution (Fig. 5).

Finally, we present results with zero magnetic helicity
(Hm = 10−7) and no rotation (� = 0) (bottom panels of
Figs. 3, 4, and 5, respectively). In this case, the absence
of excess power at lower frequencies is clear. This is more

FIG. 5. (Color online) Distribution function of the waiting time
between reversals, for four different values of the angular velocity of
rotation � and magnetic helicity Hm (dashed lines). The continuous
(red online) line corresponds to the distribution function for the
observational Cande and Kent 1995 data [1].

visible in the compensated spectrum plot (inset). Also, a larger
departure from the observational data (Fig. 5) is noted.

C. The Hurst exponent

In order to have another measure of comparison we have
additionally computed the Hurst exponent H for each of the
time series.

The standard definition is that a process g(t) is self-similar,
with self-similarity (Hurst) exponent H ∈ (0,1), if it satisfies

g(λt) ∼ λHg(t) (λ > 0). (7)
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FIG. 6. (Color online) Autocorrelations functions vs time-lag δ.

Even if a process is nonstationary, it can satisfy Eq. (7) if
the increment process δg = g(t) − g(t + 1) is stationary. A
canonical example is Brownian motion, for which H = 1/2.
When 1 > H > 0.5, there are long-range time correlations
(persistence), when 0.5 > H > 0.0, the series has long-range
anticorrelations (antipersistence), and, for a time series with
no long-time correlations, H = 0.5. The H parameter [26,27]
is often used to characterize long-range dependencies.

Long-range memory is also connected with power-law
decay of the autocorrelation function, with index β,

C(δ) = 〈μz(t)μz(t + δ)〉 ∼ δ−β, (8)

here written for the magnetic moment μ. The autocorrelation
function, for all the cases in our paper is compared in Fig. 6.
This indicates clearly the relevance of magnetic helicity and
rotation. In fact, where both are present, the tail of the
correlation function seems to be more power-law-like.

For cases with long memory, computation of the power
spectral density (PSD) becomes difficult; however when the
PSD displays a low frequency power-law range, the associated
Hurst exponent is also found as

P (f ) ∼ f −α,

1 < α = 2H + 1 < 3. (9)

In principle, the above can be used to estimate H . Performing
a fit of the power spectra at low frequencies, we obtained the
spectral indexes α for each case, reported in Table I. A different
method, described below, is used to obtain H .

The main technique we use is based on a structure function
analysis in which the expected size of changes for time lag
δ are related to the exponent H . For the q th order structure

TABLE I. Hurst analysis of the dipole moment for simulations
with different Hm and �. Fit to the power spectrum is α [as in
Eq. (9)]. Hurst exponent H is an average over Hq in Eq. (10).

Hm � α H

>0 >0 1.13 ± 0.06 0.107 ± 0.007
>0 =0 1.1 ± 0.1 0.127 ± 0.008
=0 >0 0.8 ± 0.1 0.05 ± 0.01
=0 =0 0.3 ± 0.1 0.010 ± 0.004

function one obtains an independent estimate Hq , where

Sq(δ) = 〈|μz(t + δ) − μz(t)|q〉 ∼ δζ (q) ≡ δqHq . (10)

A general statement [28] can be made about the family of
exponents: ζ (q) will be concave, d2ζ/d2 < 0. If the signal has
absolute bounds, it can be shown that ζ (q) is monotonically
nondecreasing [29]. Concavity alone is sufficient to define a
hierarchy of exponents ζ (q) = qHq .

The relation between definitions in Eqs. (7), (9), and (10)
is not immediate, indeed it has some subtleties, clearly
documented in the literature. For a good description of the
problem, see, for example, [30,31]. A typical example of the
self-similar process is given by the fractional Brownian motion
(FBM), which can be regarded as a generalization of the
well-known Brownian motion which has H = 1/2. Although
the power spectral density is not defined for a nonstationary
self-similar process such as FBM, it has been shown that a
time-averaged power spectra satisfies the relation in Eq. (9),
by means of a time-frequency analysis. An explanation can be
found in [31].

Figure 7 shows a Hurst analysis for the run with Hm > 0
and � > 0. Structure functions, computed for q = 1,2,3,4,
reveal that at large δ (low frequencies), a self-similar scaling
is present. As stated in Eq. (7), this behavior is typical of
monofractal signals. Note that the range of scales chosen for
the fits are comparable to the range of the 1/f noise in the
power spectrum. The higher order structure functions give
results consistent with monofractality in that Hq is independent
of q [see Eq. (10)]. The break point of the large-scale noise
is roughly at δ ∼ 1, the nonlinear time. Finally, we estimate
H = 1

4

∑4
q=1 Hq , and the results are shown in Table I.

The case Hm = 0, � = 0 is very particular, having a flat
spectrum, while its Hurst exponent is small and consistent with
zero, typical of white noise. On the contrary, both the cases
with (Hm > 0,� > 0), and (Hm > 0,� = 0) have H ∼ 0.1,
indicating that the signal is antipersistent.
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FIG. 7. (Color online) Hurst analysis for Hm > 0, � > 0. The
structure functions, computed up to the fourth moment, are repre-
sented with open symbols, while the fits, from Eq. (10), are reported
with lines. In the legend of the plot, the results of the fit Hq are
reported as well.
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FIG. 8. (Color online) Hurst analysis for HD model. (Top) time
series; (middle) power spectrum; (bottom) structure function analysis.

At this point we may ask if our Hurst analysis results are
comparable to that of geomagnetic reversals. Unfortunately,
this analysis cannot be performed on simplified data such as
the CK95 data set. To have an independent estimate of H for
these systems, we make use of a simple model of geomagnetic
dynamo, proposed by Hoyng and Duistermaat (HD) [32]. Very
briefly, the HD model, inspired by bistable chaotic systems,
describes the axysymmetric component of the dynamo field.
The nonlinear evolution takes into account the back-reaction
of the Lorentz force on the flow. After simplifications the
model reduces to a multidimensional bistable oscillator driven
by multiplicative noise [see Eqs. (2)–(4) of [32]]. We solved
those model equations numerically, and obtained the time
series using the same parameters as in [32]. As reported in
Fig. 8 (top), the solution manifests strong similarities with the
geomagnetic reversals. The power spectrum (middle panel)
exhibits a power law consistent with 1/f noise (slightly
steeper.) Finally, the generalized Hurst analysis (bottom) is
reported, showing that for this simple geomagnetic model,
H ∼ 0.2. This result is close to the Hurst exponent of the
dipole moment derived from our simulations, and suggests
that geomagnetic reversals are likely to have 0 < H < 0.5,
typical of systems with long-range anticorrelations.

IV. CONCLUSIONS

We obtained reversals of the dipole magnetic field with
a simple ideal MHD system, in spherical geometry and

no externally imposed driving. Numerical simulations for
durations of 5000 nominal times were performed, for cases
including or not including rotation, and for cases including or
not including magnetic helicity.

For runs with zero (or very low) helicity and zero rotation,
no clear evidence of 1/f noise is found, as the magnetic
moments become essentially uncorrelated after about 10
nonlinear times. The waiting time distributions occupy a much
narrower span of times, as reversals become numerous. The
distribution of waiting times does not match the observational
data very well in this case, and appears to form a broad peak
around a few nominal times.

When runs are carried out with either rotation or helicity
evidence for 1/f noise is found in all cases. In addition, the
waiting times begin to resemble the waiting times computed
from the CK95 geomagnetic data set. When there is a more
distinct spectral signature of 1/f power, one finds a better
correspondence of the simulation waiting times and the CK95
waiting times. This is the case for numerical runs in which
rotation is present, indicating that this effect is the most
important one to be considered to understand the reversals.

In summary, the results from this series of runs show that for
reversals to have distributions of waiting times compatible with
known observational results it is necessary to have rotation
present. Nonzero magnetic helicity is also an asset, but of
less significance. For these cases, the magnetic moment dipole
has long-time fluctuations, and a frequency analysis shows a
1/f -noise-type spectrum. As reported in previous studies, in
these cases the turbulence readily generates variability at very
long dynamical time scales.

It is of course not possible to draw definite conclusions
about the terrestrial dynamo from an oversimplified model
as the present one. Even in the context of the model that
we employ, the reported simulations have not been run
with parameters as extreme as those found in nature. For
example, with eddy speed 1×10−8 km/s, R ≈ 3000 km,
and one rotation per day, a more realistic rotation parameter
would be �t0 ∼ 105. But in that case runs extending to
5000 times t0 would correspond to ∼109 rotations. This
would be a discouragingly stiff numerical problem using
our accurate (but computationally expensive) Galerkin code.
Even then, longer runs, to perhaps 106t0 would be required
to compute reversals that might occur at 107 years. In
this perspective, the significance of the present results are
largely due to the self-similar character of both the power-law
waiting times and the apparently underlying 1/f -noise signal.
Conceptually, the present results demonstrate that the key
physical ingredients present in a simple model of nonlinear
magnetohydrodynamics, with rotation, are able to account for
statistics of reversals roughly comparable to those observed
for the terrestrial dynamo. The requisite long time scales
appear to originate in the 1/f noise generated by the model.
This 1/f -noise generation has been argued previously to be
a generic feature of nonlinear systems operating in a regime
on which nonlocality of interactions in scale is a prominent
feature [7]. As such, we suggest that geomagnetic reversals
may in part share their physical origins with a much broader
class of nonlinear self-organizing fluid problems.
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