10,878 research outputs found
Post-Newtonian corrections to the motion of spinning bodies in NRGR
In this paper we include spin and multipole moment effects in the formalism
used to describe the motion of extended objects recently introduced in
hep-th/0409156. A suitable description for spinning bodies is developed and
spin-orbit, spin-spin and quadrupole-spin Hamiltonians are found at leading
order. The existence of tidal, as well as self induced finite size effects is
shown, and the contribution to the Hamiltonian is calculated in the latter. It
is shown that tidal deformations start formally at O(v^6) and O(v^10) for
maximally rotating general and compact objects respectively, whereas self
induced effects can show up at leading order. Agreement is found for the cases
where the results are known.Comment: 18 pages, 9 figures. Typos corrected, to appear in Physical Review
Dynamics of test bodies with spin in de Sitter spacetime
We study the motion of spinning test bodies in the de Sitter spacetime of
constant positive curvature. With the help of the 10 Killing vectors, we derive
the 4-momentum and the tensor of spin explicitly in terms of the spacetime
coordinates. However, in order to find the actual trajectories, one needs to
impose the so-called supplementary condition. We discuss the dynamics of
spinning test bodies for the cases of the Frenkel and Tulczyjew conditions.Comment: 11 pages, RevTex forma
Innermost Stable Circular Orbit of a Spinning Particle in Kerr Spacetime
We study stability of a circular orbit of a spinning test particle in a Kerr
spacetime. We find that some of the circular orbits become unstable in the
direction perpendicular to the equatorial plane, although the orbits are still
stable in the radial direction. Then for the large spin case ($S < \sim O(1)),
the innermost stable circular orbit (ISCO) appears before the minimum of the
effective potential in the equatorial plane disappears. This changes the radius
of ISCO and then the frequency of the last circular orbit.Comment: 25 pages including 8 figure
Gigahertz quantum key distribution with InGaAs avalanche photodiodes
We report a demonstration of quantum key distribution (QKD) at GHz clock
rates with InGaAs avalanche photodiodes (APDs) operating in a self-differencing
mode. Such a mode of operation allows detection of extremely weak avalanches so
that the detector afterpulse noise is sufficiently suppressed. The system is
characterized by a secure bit rate of 2.37 Mbps at 5.6 km and 27.9 kbps at 65.5
km when the fiber dispersion is not compensated. After compensating the fiber
dispersion, the QKD distance is extended to 101 km, resulting in a secure key
rate of 2.88 kbps. Our results suggest that InGaAs APDs are very well suited to
GHz QKD applications.Comment: 4 pages, 4 figure
Fuels treatment and wildfire effects on runoff from Sierra Nevada mixed-conifer forests
We applied an eco-hydrologic model (Regional Hydro-Ecologic Simulation System [RHESSys]), constrained with spatially distributed field measurements, to assess the impacts of forest-fuel treatments and wildfire on hydrologic fluxes in two Sierra Nevada firesheds. Strategically placed fuels treatments were implemented during 2011–2012 in the upper American River in the central Sierra Nevada (43 km2) and in the upper Fresno River in the southern Sierra Nevada (24 km2). This study used the measured vegetation changes from mechanical treatments and modelled vegetation change from wildfire to determine impacts on the water balance. The well-constrained headwater model was transferred to larger catchments based on geologic and hydrologic similarities. Fuels treatments covered 18% of the American and 29% of the Lewis catchment. Averaged over the entire catchment, treatments in the wetter central Sierra Nevada resulted in a relatively light vegetation decrease (8%), leading to a 12% runoff increase, averaged over wet and dry years. Wildfire with and without forest treatments reduced vegetation by 38% and 50% and increased runoff by 55% and 67%, respectively. Treatments in the drier southern Sierra Nevada also reduced the spatially averaged vegetation by 8%, but the runoff response was limited to an increase of less than 3% compared with no treatment. Wildfire following treatments reduced vegetation by 40%, increasing runoff by 13%. Changes to catchment-scale water-balance simulations were more sensitive to canopy cover than to leaf area index, indicating that the pattern as well as amount of vegetation treatment is important to hydrologic response
Second-order gravitational self-force
We derive an expression for the second-order gravitational self-force that
acts on a self-gravitating compact-object moving in a curved background
spacetime. First we develop a new method of derivation and apply it to the
derivation of the first-order gravitational self-force. Here we find that our
result conforms with the previously derived expression. Next we generalize our
method and derive a new expression for the second-order gravitational
self-force. This study also has a practical motivation: The data analysis for
the planned gravitational wave detector LISA requires construction of waveforms
templates for the expected gravitational waves. Calculation of the two leading
orders of the gravitational self-force will enable one to construct highly
accurate waveform templates, which are needed for the data analysis of
gravitational-waves that are emitted from extreme mass-ratio binaries.Comment: 35 page
Rapid Polymerase Chain Reaction–Based Test for the Detection of Female Urogenital Chlamydial Infections
Objective: The purpose of this study was to evaluate the Amplicor
Chlamydia trachomatis Test (Roche Molecular Systems, Branchburg, NJ),
a polymerase chain reaction (PCR)-based technique, as a screening test for the detection
of female urogenital C. trachomatis infections, comparing it to an enzyme
immunoassay method
Signature of chaos in gravitational waves from a spinning particle
A spinning test particle around a Schwarzschild black hole shows a chaotic
behavior, if its spin is larger than a critical value. We discuss whether or
not some peculiar signature of chaos appears in the gravitational waves emitted
from such a system. Calculating the emitted gravitational waves by use of the
quadrupole formula, we find that the energy emission rate of gravitational
waves for a chaotic orbit is about 10 times larger than that for a circular
orbit, but the same enhancement is also obtained by a regular "elliptic" orbit.
A chaotic motion is not always enhance the energy emission rate maximally. As
for the energy spectra of the gravitational waves, we find some characteristic
feature for a chaotic orbit. It may tell us how to find out a chaotic behavior
of the system. Such a peculiar behavior, if it will be found, may also provide
us some additional informations to determine parameters of a system such as a
spin.Comment: 14 pages, LaTeX, to appear in Phys. Rev.
Mechanism Design in Social Networks
This paper studies an auction design problem for a seller to sell a commodity
in a social network, where each individual (the seller or a buyer) can only
communicate with her neighbors. The challenge to the seller is to design a
mechanism to incentivize the buyers, who are aware of the auction, to further
propagate the information to their neighbors so that more buyers will
participate in the auction and hence, the seller will be able to make a higher
revenue. We propose a novel auction mechanism, called information diffusion
mechanism (IDM), which incentivizes the buyers to not only truthfully report
their valuations on the commodity to the seller, but also further propagate the
auction information to all their neighbors. In comparison, the direct extension
of the well-known Vickrey-Clarke-Groves (VCG) mechanism in social networks can
also incentivize the information diffusion, but it will decrease the seller's
revenue or even lead to a deficit sometimes. The formalization of the problem
has not yet been addressed in the literature of mechanism design and our
solution is very significant in the presence of large-scale online social
networks.Comment: In The Thirty-First AAAI Conference on Artificial Intelligence, San
Francisco, US, 04-09 Feb 201
Highly relativistic spinning particle starting near in a Kerr field
Using the Mathisson-Papapetrou-Dixon (MPD) equations, we investigate the
trajectories of a spinning particle starting near in a Kerr
field and moving with the velocity close to the velocity of light
( is the Boyer-Lindquist radial coordinate of the
counter-rotation circular photon orbits). First, as a partial case of these
trajectories, we consider the equatorial circular orbit with .
This orbit is described by the solution that is common for the rigorous MPD
equations and their linear spin approximation. Then different cases of the
nonequatorial motions are computed and illustrated by the typical figures. All
these orbits exhibit the effects of the significant gravitational repulsion
that are caused by the spin-gravity interaction. Possible applications in
astrophysics are discussed.Comment: 10 pages, 12 figure
- …