582 research outputs found

    Direct Ink Writing of Recyclable Supramolecular Soft Actuators

    Get PDF
    Direct ink writing (DIW) of liquid crystal elastomers (LCEs) has rapidly paved its way into the field of soft actuators and other stimuli-responsive devices. However, currently used LCE systems for DIW require postprinting (photo)polymerization, thereby forming a covalent network, making the process time-consuming and the material nonrecyclable. In this work, a DIW approach is developed for printing a supramolecular poly(thio)urethane LCE to overcome these drawbacks of permanent cross-linking. The thermo-reversible nature of the supramolecular cross-links enables the interplay between melt-processable behavior required for extrusion and formation of the network to fix the alignment. After printing, the actuators demonstrated a reversible contraction of 12.7% or bending and curling motions when printed on a passive substrate. The thermoplastic ink enables recyclability, as shown by cutting and printing the actuators five times. However, the actuation performance diminishes. This work highlights the potential of supramolecular LCE inks for DIW soft circular actuators and other devices

    The Hypotension Prediction Index is equally effective in predicting intraoperative hypotension during non-cardiac surgery compared to a mean arterial pressure threshold: a prospective observational study

    Get PDF
    BackgroundThe Hypotension Prediction Index is designed to timely predict intraoperative hypotension and is based on arterial waveform analysis using machine learning. It has recently been suggested that this algorithm is highly correlated with the mean arterial pressure (MAP) itself. Therefore, the aim of this study was to compare the Index with MAP based prediction methods and it is hypothesized that their ability to predict hypotension is comparable.MethodsIn this observational study, the Hypotension Prediction Index was used in addition to routine intraoperative monitoring during moderate- to high-risk elective non-cardiac surgery. The agreement in time between the default Hypotension Prediction Index alarm (>85) and different concurrent MAP thresholds was evaluated. Additionally, the predictive performance of the Index and different MAP based methods were assessed within five, ten and fifteen minutes before hypotension occurred.ResultsA total of 100 patients were included. A MAP threshold of 73 mmHg agreed 97% of the time with the default Index alarm, while a MAP threshold of 72 mmHg had the most comparable predictive performance. The areas under the receiver operating characteristic curve of the Hypotension Prediction Index (0.89 (0.88-0.89)) and concurrent MAP (0.88 (0.88-0.89)) were almost identical for predicting hypotension within five minutes, outperforming both linearly extrapolated MAP (0.85 (0.84-0.85)) and delta MAP (0.66 (0.65-0.67)). The positive predictive value was 31.9 (31.3–32.6)% for the default Index alarm and 32.9 (32.2–33.6)% for a MAP threshold of 72 mmHg.ConclusionIn clinical practice, the Hypotension Prediction Index alarms are highly similar to those derived from MAP, which implies that the machine learning algorithm could be substituted by an alarm based on a MAP threshold set at 72 or 73 mmHg. Further research on intraoperative hypotension prediction should therefore include comparison with MAP based alarms and related effects on patient outcome

    A Gene Co-Expression Network in Whole Blood of Schizophrenia Patients Is Independent of Antipsychotic-Use and Enriched for Brain-Expressed Genes

    Get PDF
    Despite large-scale genome-wide association studies (GWAS), the underlying genes for schizophrenia are largely unknown. Additional approaches are therefore required to identify the genetic background of this disorder. Here we report findings from a large gene expression study in peripheral blood of schizophrenia patients and controls. We applied a systems biology approach to genome-wide expression data from whole blood of 92 medicated and 29 antipsychotic-free schizophrenia patients and 118 healthy controls. We show that gene expression profiling in whole blood can identify twelve large gene co-expression modules associated with schizophrenia. Several of these disease related modules are likely to reflect expression changes due to antipsychotic medication. However, two of the disease modules could be replicated in an independent second data set involving antipsychotic-free patients and controls. One of these robustly defined disease modules is significantly enriched with brain-expressed genes and with genetic variants that were implicated in a GWAS study, which could imply a causal role in schizophrenia etiology. The most highly connected intramodular hub gene in this module (ABCF1), is located in, and regulated by the major histocompatibility (MHC) complex, which is intriguing in light of the fact that common allelic variants from the MHC region have been implicated in schizophrenia. This suggests that the MHC increases schizophrenia susceptibility via altered gene expression of regulatory genes in this network

    The Effect of Using Pazopanib With Food vs. Fasted on Pharmacokinetics, Patient Safety, and Preference (DIET Study)

    Get PDF
    Pazopanib is taken fasted in a fixed oral daily dose of 800 mg. We hypothesized that ingesting pazopanib with food may improve patients' comfort and reduce gastrointestinal (GI) adverse events. Therefore, we investigated the bioequivalent dose of pazopanib when taken with food compared with 800 mg pazopanib taken fasted. In addition, we investigated the differences in GI toxicity, patient satisfaction, and patient's preference for either intake. The intake of 600 mg pazopanib with food resulted in a bioequivalent exposure and was preferred over a standard pazopanib dose without food. No differences were seen in GI toxicities under both intake regimens. Patients seem to be more positive about their feelings about side effects and satisfaction with their therapy when pazopanib was taken with food. Forty-one of the patients (68%) preferred the intake with a continental breakfast

    Spontaneous liver disease in wild-type C57BL/6JOlaHsd mice fed semisynthetic diet

    Get PDF
    Mouse models are frequently used to study mechanisms of human diseases. Recently, we observed a spontaneous bimodal variation in liver weight in C57BL/6JOlaHsd mice fed a semisynthetic diet. We now characterized the spontaneous variation in liver weight and its relationship with parameters of hepatic lipid and bile acid (BA) metabolism. In male C57BL/6JOlaHsd mice fed AIN-93G from birth to postnatal day (PN)70, we measured plasma BA, lipids, Very low-density lipoprotein (VLDL)-triglyceride (TG) secretion, and hepatic mRNA expression patterns. Mice were sacrificed at PN21, PN42, PN63 and PN70. Liver weight distribution was bimodal at PN70. Mice could be subdivided into two nonoverlapping groups based on liver weight: 0.6 SD 0.1 g (approximately one-third of mice, small liver; SL), and 1.0 SD 0.1 g (normal liver; NL; p<0.05). Liver histology showed a higher steatosis grade, inflammation score, more mitotic figures and more fibrosis in the SL versus the NL group. Plasma BA concentration was 14-fold higher in SL (p<0.001). VLDL-TG secretion rate was lower in SL mice, both absolutely (-66%, p<0.001) and upon correction for liver weight (-44%, p<0.001). Mice that would later have the SL-phenotype showed lower food efficiency ratios during PN21-28, suggesting the cause of the SL phenotype is present at weaning (PN21). Our data show that approximately one-third of C57BL/6JOlaHsd mice fed semisynthetic diet develop spontaneous liver disease with aberrant histology and parameters of hepatic lipid, bile acid and lipoprotein metabolism. Study designs involving this mouse strain on semisynthetic diets need to take the SL phenotype into account. Plasma lipids may serve as markers for the identification of the SL phenotype

    Validation of a clinicopathological and gene expression profile model for sentinel lymph node metastasis in primary cutaneous melanoma

    Get PDF
    Background: The Clinicopathological and Gene Expression Profile (CP-GEP) model was developed to accurately identify patients with T1–T3 primary cutaneous melanoma at low risk for nodal metastasis. Objectives: To validate the CP-GEP model in an independent Dutch cohort of patients with melanoma. Methods: Patients (aged ≥ 18 years) with primary cutaneous melanoma who underwent sentinel lymph node biopsy (SLNB) between 2007 and 2017 at the Erasmus Medical Centre Cancer Institute were eligible. The CP-GEP model combines clinicopathological features (age and Breslow thickness) with the expression of eight target genes involved in melanoma metastasis (ITGB3, PLAT, SERPINE2, GDF15, TGFBR1, LOXL4, CXCL8 and MLANA). Using the pathology result of SLNB as the gold standard, performance measures of the CP-GEP model were calculated, resulting in CP-GEP high risk or low risk for nodal metastasis. Results: In total, 210 patients were included in the study. Most patients presented with T2 (n = 94, 45%) or T3 (n = 70, 33%) melanoma. Of all patients, 27% (n = 56) had a positive SLNB, with nodal metastasis in 0%, 30%, 54% and 16% of patients with T1, T2, T3 and T4 melanoma, respectively. Overall, the CP-GEP model had a negative predictive value (NPV) of 90·5% [95% confidence interval (CI) 77·9–96.2], with an NPV of 100% (95% CI 72·2–100) in T1, 89·3% (95% CI 72·8–96·3) in T2 and 75·0% (95% CI 30·1–95·4) in T3 melanomas. The CP-GEP indicated high risk in all T4 melanomas. Conclusions: The CP-GEP model is a noninvasive and validated tool that accurately identified patients with primary cutaneous melanoma at low risk for nodal metastasis. In this validation cohort, the CP-GEP model has shown the potential to reduce SLNB procedures in patients with melanoma

    Measurement of the ratios of branching fractions R(D)\mathcal{R}(D^{*}) and R(D0)\mathcal{R}(D^{0})

    Full text link
    The ratios of branching fractions R(D)B(BˉDτνˉτ)/B(BˉDμνˉμ)\mathcal{R}(D^{*})\equiv\mathcal{B}(\bar{B}\to D^{*}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(\bar{B}\to D^{*}\mu^{-}\bar{\nu}_{\mu}) and R(D0)B(BD0τνˉτ)/B(BD0μνˉμ)\mathcal{R}(D^{0})\equiv\mathcal{B}(B^{-}\to D^{0}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(B^{-}\to D^{0}\mu^{-}\bar{\nu}_{\mu}) are measured, assuming isospin symmetry, using a sample of proton-proton collision data corresponding to 3.0 fb1{ }^{-1} of integrated luminosity recorded by the LHCb experiment during 2011 and 2012. The tau lepton is identified in the decay mode τμντνˉμ\tau^{-}\to\mu^{-}\nu_{\tau}\bar{\nu}_{\mu}. The measured values are R(D)=0.281±0.018±0.024\mathcal{R}(D^{*})=0.281\pm0.018\pm0.024 and R(D0)=0.441±0.060±0.066\mathcal{R}(D^{0})=0.441\pm0.060\pm0.066, where the first uncertainty is statistical and the second is systematic. The correlation between these measurements is ρ=0.43\rho=-0.43. Results are consistent with the current average of these quantities and are at a combined 1.9 standard deviations from the predictions based on lepton flavor universality in the Standard Model.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-039.html (LHCb public pages

    Multidifferential study of identified charged hadron distributions in ZZ-tagged jets in proton-proton collisions at s=\sqrt{s}=13 TeV

    Full text link
    Jet fragmentation functions are measured for the first time in proton-proton collisions for charged pions, kaons, and protons within jets recoiling against a ZZ boson. The charged-hadron distributions are studied longitudinally and transversely to the jet direction for jets with transverse momentum 20 <pT<100< p_{\textrm{T}} < 100 GeV and in the pseudorapidity range 2.5<η<42.5 < \eta < 4. The data sample was collected with the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 1.64 fb1^{-1}. Triple differential distributions as a function of the hadron longitudinal momentum fraction, hadron transverse momentum, and jet transverse momentum are also measured for the first time. This helps constrain transverse-momentum-dependent fragmentation functions. Differences in the shapes and magnitudes of the measured distributions for the different hadron species provide insights into the hadronization process for jets predominantly initiated by light quarks.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-013.html (LHCb public pages

    Study of the BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} decay

    Full text link
    The decay BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} is studied in proton-proton collisions at a center-of-mass energy of s=13\sqrt{s}=13 TeV using data corresponding to an integrated luminosity of 5 fb1\mathrm{fb}^{-1} collected by the LHCb experiment. In the Λc+K\Lambda_{c}^+ K^{-} system, the Ξc(2930)0\Xi_{c}(2930)^{0} state observed at the BaBar and Belle experiments is resolved into two narrower states, Ξc(2923)0\Xi_{c}(2923)^{0} and Ξc(2939)0\Xi_{c}(2939)^{0}, whose masses and widths are measured to be m(Ξc(2923)0)=2924.5±0.4±1.1MeV,m(Ξc(2939)0)=2938.5±0.9±2.3MeV,Γ(Ξc(2923)0)=0004.8±0.9±1.5MeV,Γ(Ξc(2939)0)=0011.0±1.9±7.5MeV, m(\Xi_{c}(2923)^{0}) = 2924.5 \pm 0.4 \pm 1.1 \,\mathrm{MeV}, \\ m(\Xi_{c}(2939)^{0}) = 2938.5 \pm 0.9 \pm 2.3 \,\mathrm{MeV}, \\ \Gamma(\Xi_{c}(2923)^{0}) = \phantom{000}4.8 \pm 0.9 \pm 1.5 \,\mathrm{MeV},\\ \Gamma(\Xi_{c}(2939)^{0}) = \phantom{00}11.0 \pm 1.9 \pm 7.5 \,\mathrm{MeV}, where the first uncertainties are statistical and the second systematic. The results are consistent with a previous LHCb measurement using a prompt Λc+K\Lambda_{c}^{+} K^{-} sample. Evidence of a new Ξc(2880)0\Xi_{c}(2880)^{0} state is found with a local significance of 3.8σ3.8\,\sigma, whose mass and width are measured to be 2881.8±3.1±8.5MeV2881.8 \pm 3.1 \pm 8.5\,\mathrm{MeV} and 12.4±5.3±5.8MeV12.4 \pm 5.3 \pm 5.8 \,\mathrm{MeV}, respectively. In addition, evidence of a new decay mode Ξc(2790)0Λc+K\Xi_{c}(2790)^{0} \to \Lambda_{c}^{+} K^{-} is found with a significance of 3.7σ3.7\,\sigma. The relative branching fraction of BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} with respect to the BD+DKB^{-} \to D^{+} D^{-} K^{-} decay is measured to be 2.36±0.11±0.22±0.252.36 \pm 0.11 \pm 0.22 \pm 0.25, where the first uncertainty is statistical, the second systematic and the third originates from the branching fractions of charm hadron decays.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-028.html (LHCb public pages
    corecore