19 research outputs found

    On the move: induced resistance in monocots

    Get PDF
    Although plants possess an arsenal of constitutive defences such as structural barriers and preformed antimicrobial defences, many attackers are able to overcome the pre-existing defence layers. In response, a range of inducible plant defences is set up to battle these pathogens. These mechanisms, commonly integrated as induced resistance (IR), control pathogens and pests by the activation of specific defence pathways. IR mechanisms have been extensively studied in the Dicotyledoneae, whereas knowledge of IR in monocotyledonous plants, including the globally important graminaceous crop plants, is elusive. Considering the potential of IR for sustainable agriculture and the recent advances in monocot genomics and biotechnology, IR in monocots is an emerging research field. In the following, current facts and trends concerning basal immunity, and systemic acquired/induced systemic resistance in the defence of monocots against pathogens and herbivores will be summarize

    Signs of Silence: Small RNAs and Antifungal Responses in Arabidopsis thaliana and Zea mays

    Get PDF
    Plant small RNAs (sRNAs) are pivotal regulators of gene expression, which are crucial in maintaining genome integrity and flexibility during development, abiotic and biotic stress responses. Current evidence suggests that sRNAs might be inherent to the sophisticated plant innate immune system battling bacteria. However, the role of sRNAs during antifungal plant defences is less clear. Therefore, this chapter investigates the sRNA‐mediated plant antifungal responses against the hemibiotrophic fungi Colletotrichum higginsianum and Colletotrichum graminicola in their respective compatible hosts Arabidopsis thaliana and Zea mays. A phenotypic and metabolomic analysis of A. thaliana sRNA mutants in response to C. higginsianum infection was performed, showing a hormonal and metabolic imbalance during fungal infection in these plants. To find whether fungal-induced sRNA could directly regulate defence genes in an agricultural important plant model, the expression of maize miRNAs in response to C. graminicola leaf and root infections was investigated. The results revealed the tissue‐specific local and systemic adaptation of the miRNA transcriptome, where only a few miRNAs were targeting defence pathways. The general picture presented here points towards a role of sRNAs as fine‐tuners of genetic and metabolomic defence response layers. This chapter also further discusses the potential of utilizing sRNA‐based fungal control strategies

    Metabolomics of cereals under biotic stress: current knowledge and techniques

    Get PDF
    Prone to attacks by pathogens and pests, plants employ intricate chemical defense mechanisms consisting of metabolic adaptations. However, many plant attackers are manipulating the host metabolism to counteract defense responses and to induce favorable nutritional conditions. Advances in analytical chemistry have allowed the generation of extensive metabolic profiles during plant-pathogen and pest interactions. Thereby, metabolic processes were found to be highly specific for given tissues, species, and plantpathogen/pest interactions. The clusters of identified compounds not only serve as base in the quest of novel defense compounds, but also as markers for the characterization of the plants’ defensive state. The latter is especially useful in agronomic applications where meaningful markers are essential for crop protection. Cereals such as maize make use of their metabolic arsenal during both local and systemic defense responses, and the chemical response is highly adapted to specific attackers. Here, we summarize highlights and recent findings of metabolic patterns of cereals under pathogen and pest attack.National Centre of Competence in Research (NCCR) 'Plant Survival' SNF 31003A_140593 Swiss National Science Foundation Plan de Promocion de la Investigacion de la Universitat Jaume I P1.1B2010-0

    A soil-free root observation system for the study of root-microorganism interactions in maize

    Get PDF
    Background and aims: The root surface of a plant usually exceeds the leaf area and is constantly exposed to a variety of soil-borne microorganisms. Root pathogens and pests, as well as belowground interactions with beneficial microbes, can significantly influence a plants' performance. Unfortunately, the analysis of these interactions is often limited because of the arduous task of accessing roots growing in soil. Here, we present a soil-free root observation system (SF-ROBS) designed to grow maize (Zea mays) plants and to study root interactions with either beneficial or pathogenic microbes. Methods: The SF-ROBS consists of pouches lined with wet filter paper supplying nutrient solution. Results: The aspect of maize grown in the SF-ROBS was similar to soil-grown maize; the plant growth was similar for the shoot but different for the roots (biomass and length increased in the SF-ROBS). SF-ROBS-grown roots were successfully inoculated with the hemi-biotrophic maize fungal pathogen Colletotrichum graminicola and the beneficial rhizobacteria Pseudomonas putida KT2440. Thus, the SF-ROBS is a system suitable to study two major belowground phenomena, namely root fungal defense reactions and interactions of roots with beneficial soil-borne bacteria. Conclusions: This system contributes to a better understanding of belowground plant microbe interactions in maize and most likely also in other crop

    Synergies and trade-offs between insect and pathogen resistance in maize leaves and roots

    No full text
    Determining links between plant defence strategies is important to understand plant evolution and to optimize crop breeding strategies. Although several examples of synergies and trade-offs between defence traits are known for plants that are under attack by multiple organisms, few studies have attempted to measure correlations of defensive strategies using specific single attackers. Such links are hard to detect in natural populations because they are inherently confounded by the evolutionary history of different ecotypes. We therefore used a range of 20 maize inbred lines with considerable differences in resistance traits to determine if correlations exist between leaf and root resistance against pathogens and insects. Aboveground resistance against insects was positively correlated with the plant's capacity to produce volatiles in response to insect attack. Resistance to herbivores and resistance to a pathogen, on the other hand, were negatively correlated. Our results also give first insights into the intraspecific variability of root volatiles release in maize and its positive correlation with leaf volatile production. We show that the breeding history of the different genotypes (dent versus flint) has influenced several defensive parameters. Taken together, our study demonstrates the importance of genetically determined synergies and trade-offs for plant resistance against insects and pathogens.status: publishe

    Synergies and trade-offs between insect and pathogen resistance in maize leaves and roots

    No full text
    Determining links between plant defence strategies is important to understand plant evolution and to optimize crop breeding strategies. Although several examples of synergies and trade-offs between defence traits are known for plants that are under attack by multiple organisms, few studies have attempted to measure correlations of defensive strategies using specific single attackers. Such links are hard to detect in natural populations because they are inherently confounded by the evolutionary history of different ecotypes. We therefore used a range of 20 maize inbred lines with considerable differences in resistance traits to determine if correlations exist between leaf and root resistance against pathogens and insects. Aboveground resistance against insects was positively correlated with the plant's capacity to produce volatiles in response to insect attack. Resistance to herbivores and resistance to a pathogen, on the other hand, were negatively correlated. Our results also give first insights into the intraspecific variability of root volatiles release in maize and its positive correlation with leaf volatile production. We show that the breeding history of the different genotypes (dent versus flint) has influenced several defensive parameters. Taken together, our study demonstrates the importance of genetically determined synergies and trade-offs for plant resistance against insects and pathogens
    corecore