495 research outputs found

    Biosimilars: The Quest for a Rational Regulatory and Intellectual Property Approach in Canada

    Get PDF
    Biologics and biosimilars represent the promise for more effective treatments of many diseases. International treaty obligations influenced heavily by the biopharmaceutical industry and advanced through the international trade agenda may lead to an imbalance between incentivizing innovation and the public interest. Canada’s implementation of its obligations into national patent and regulatory laws encourages aggressive biologic patent protection strategies that, coupled with linked regulatory assessments, may establish compounding layers of exclusion that disproportionately disincentivizes both the biologics innovation and biosimilar development. This comparative analysis addresses the progression of international obligations and the way in which they have been implemented into Canada’s patent/IP and regulatory frameworks as compared to the US and EU. A quantitative comparison of biosimilar approvals and launches provides insight on how international obligations and national legislation have impacted these outcomes. Patent and regulatory laws must be balanced to incentivize innovation and promote access to treatments now and tomorrow

    Challenges with sensitized recipients in pediatric heart transplantation

    Get PDF
    The sensitization of patients to human leukocyte antigens prior to heart transplantation is increasingly being recognized as an important challenge both before and after the transplant, and the effects of sensitization on clinical outcomes are just beginning to be understood. Many patients are listed with the requirement of a negative prospective or virtual crossmatch prior to accepting a donor organ. This strategy has been associated with both longer waitlist times and higher waitlist mortality. An alternative approach is to transplant across a potentially positive crossmatch while utilizing strategies to decrease the significance of the human leukocyte antigen antibodies. This review will examine the challenges and the impact of sensitization on pediatric patients prior to and following heart transplantation

    Heart Transplantation in the United States, 1999–2008

    Full text link
    This article features 1999–2008 trends in heart transplantation, as seen in data from the Organ Procurement and Transplantation Network (OPTN) and the Scientific Registry of Transplant Recipients (SRTR). Despite a 32% decline in actively listed candidates over the decade, there was a 20% increase from 2007 to 2008. There continues to be an increase in listed candidates diagnosed with congenital heart disease or retransplantation. The proportion of patients listed as Status 1A and 1B continues to increase, with a decrease in Status 2 listings. Waiting list mortality decreased from 2000 through 2007, but increased 18% from 2007 to 2008; despite the increase in waiting list death rates in 2008, waiting list mortality for Status 1A and Status 1B continues to decrease. Recipient numbers have varied by 10% over the past decade, with an increased proportion of transplants performed in infants and patients above 65 years of age. Despite the increase in Status 1A and Status 1B recipients at transplant, posttransplant survival has continued to improve. With the rise in infant candidates for transplantation and their high waiting list mortality, better means of supporting infants in need of transplant and allocation of organs to infant candidates is clearly needed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/79117/1/j.1600-6143.2010.03042.x.pd

    A Symposium on Donor‐Specific Antibodies after Transplantation Introduction

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106818/1/j.1399-3046.2011.01521.x.pd

    Effects of donor cause of death, ischemia time, inotrope exposure, troponin values, cardiopulmonary resuscitation, electrocardiographic and echocardiographic data on recipient outcomes: A review of the literature

    Full text link
    BackgroundHeart transplantation has become standard of care for pediatric patients with either end‐stage heart failure or inoperable congenital heart defects. Despite increasing surgical complexity and overall volume, however, annual transplant rates remain largely unchanged. Data demonstrating pediatric donor heart refusal rates of 50% suggest optimizing donor utilization is critical. This review evaluated the impact of donor characteristics surrounding the time of death on pediatric heart transplant recipient outcomes.MethodsAn extensive literature review was performed to identify articles focused on donor characteristics surrounding the time of death and their impact on pediatric heart transplant recipient outcomes.ResultsPotential pediatric heart transplant recipient institutions commonly receive data from seven different donor death‐related categories with which to determine organ acceptance: cause of death, need for CPR, serum troponin, inotrope exposure, projected donor ischemia time, electrocardiographic, and echocardiographic results. Although DITs up to 8 hours have been reported with comparable recipient outcomes, most data support minimizing this period to <4 hours. CVA as a cause of death may be associated with decreased recipient survival but is rare in the pediatric population. Otherwise, however, in the setting of an acceptable donor heart with a normal echocardiogram, none of the other data categories surrounding donor death negatively impact pediatric heart transplant recipient survival.ConclusionsEchocardiographic evaluation is the most important donor clinical information following declaration of brain death provided to potential recipient institutions. Considering its relative importance, every effort should be made to allow direct image visualization.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154939/1/petr13676.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154939/2/petr13676_am.pd

    Immunologic risk stratification of pediatric heart transplant patients by combining HLA-EMMA and PIRCHE-II

    Get PDF
    Human leukocyte antigen (HLA) molecular mismatch is a powerful biomarker of rejection. Few studies have explored its use in assessing rejection risk in heart transplant recipients. We tested the hypothesis that a combination of HLA Epitope Mismatch Algorithm (HLA-EMMA) and Predicted Indirectly Recognizable HLA Epitopes (PIRCHE-II) algorithms can improve risk stratification of pediatric heart transplant recipients. Class I and II HLA genotyping were performed by next-generation sequencing on 274 recipient/donor pairs enrolled in the Clinical Trials in Organ Transplantation in Children (CTOTC). Using high-resolution genotypes, we performed HLA molecular mismatch analysis with HLA-EMMA and PIRCHE-II, and correlated these findings with clinical outcomes. Patients without pre-formed donor specific antibody (DSA) (n=100) were used for correlations with post-transplant DSA and antibody mediated rejection (ABMR). Risk cut-offs were determined for DSA and ABMR using both algorithms. HLA-EMMA cut-offs alone predict the risk of DSA and ABMR; however, if used in combination with PIRCHE-II, the population could be further stratified into low-, intermediate-, and high-risk groups. The combination of HLA-EMMA and PIRCHE-II enables more granular immunological risk stratification. Intermediate-risk cases, like low-risk cases, are at a lower risk of DSA and ABMR. This new way of risk evaluation may facilitate individualized immunosuppression and surveillance.</p

    Immunologic risk stratification of pediatric heart transplant patients by combining HLA-EMMA and PIRCHE-II

    Get PDF
    Human leukocyte antigen (HLA) molecular mismatch is a powerful biomarker of rejection. Few studies have explored its use in assessing rejection risk in heart transplant recipients. We tested the hypothesis that a combination of HLA Epitope Mismatch Algorithm (HLA-EMMA) and Predicted Indirectly Recognizable HLA Epitopes (PIRCHE-II) algorithms can improve risk stratification of pediatric heart transplant recipients. Class I and II HLA genotyping were performed by next-generation sequencing on 274 recipient/donor pairs enrolled in the Clinical Trials in Organ Transplantation in Children (CTOTC). Using high-resolution genotypes, we performed HLA molecular mismatch analysis with HLA-EMMA and PIRCHE-II, and correlated these findings with clinical outcomes. Patients without pre-formed donor specific antibody (DSA) (n=100) were used for correlations with post-transplant DSA and antibody mediated rejection (ABMR). Risk cut-offs were determined for DSA and ABMR using both algorithms. HLA-EMMA cut-offs alone predict the risk of DSA and ABMR; however, if used in combination with PIRCHE-II, the population could be further stratified into low-, intermediate-, and high-risk groups. The combination of HLA-EMMA and PIRCHE-II enables more granular immunological risk stratification. Intermediate-risk cases, like low-risk cases, are at a lower risk of DSA and ABMR. This new way of risk evaluation may facilitate individualized immunosuppression and surveillance.</p

    Canadian Guidelines for Controlled Pediatric Donation After Circulatory Determination of Death-Summary Report

    Get PDF
    OBJECTIVES: Create trustworthy, rigorous, national clinical practice guidelines for the practice of pediatric donation after circulatory determination of death in Canada. METHODS: We followed a process of clinical practice guideline development based on World Health Organization and Canadian Medical Association methods. This included application of Grading of Recommendations Assessment, Development, and Evaluation methodology. Questions requiring recommendations were generated based on 1) 2006 Canadian donation after circulatory determination of death guidelines (not pediatric specific), 2) a multidisciplinary symposium of national and international pediatric donation after circulatory determination of death leaders, and 3) a scoping review of the pediatric donation after circulatory determination of death literature. Input from these sources drove drafting of actionable questions and Good Practice Statements, as defined by the Grading of Recommendations Assessment, Development, and Evaluation group. We performed additional literature reviews for all actionable questions. Evidence was assessed for quality using Grading of Recommendations Assessment, Development, and Evaluation and then formulated into evidence profiles that informed recommendations through the evidence-to-decision framework. Recommendations were revised through consensus among members of seven topic-specific working groups and finalized during meetings of working group leads and the planning committee. External review was provided by pediatric, critical care, and critical care nursing professional societies and patient partners. RESULTS: We generated 63 Good Practice Statements and seven Grading of Recommendations Assessment, Development, and Evaluation recommendations covering 1) ethics, consent, and withdrawal of life-sustaining therapy, 2) eligibility, 3) withdrawal of life-sustaining therapy practices, 4) ante and postmortem interventions, 5) death determination, 6) neonatal pediatric donation after circulatory determination of death, 7) cardiac and innovative pediatric donation after circulatory determination of death, and 8) implementation. For brevity, 48 Good Practice Statement and truncated justification are included in this summary report. The remaining recommendations, detailed methodology, full Grading of Recommendations Assessment, Development, and Evaluation tables, and expanded justifications are available in the full text report. CONCLUSIONS: This process showed that rigorous, transparent clinical practice guideline development is possible in the domain of pediatric deceased donation. Application of these recommendations will increase access to pediatric donation after circulatory determination of death across Canada and may serve as a model for future clinical practice guideline development in deceased donation
    corecore