28 research outputs found

    Atmosphere-soil-stream greenhouse gas fluxes from peatlands

    Get PDF
    Peatlands cover approximately 2-3% of the world’s land area yet represent approximately a third of the worlds estimated total soil carbon pool. They therefore play an important role in regulating global atmospheric CO2 and CH4 concentrations, and even minor changes in their ability to store carbon could potentially have significant effects on global climate change. Much previous research has focussed primarily on land-atmosphere fluxes. Where aquatic fluxes have been considered, they are often in isolation from the rest of the catchment and usually focus on downstream losses, ignoring evasion (degassing) from the water surface. However, as peatland streams have been repeatedly shown to be highly supersaturated in both CO2 and CH4 with respect to the atmosphere, they potentially represent an important pathway for catchment GHG losses. This study aimed to a) create a complete GHG and carbon budget for Auchencorth Moss catchment, Scotland, linking both terrestrial and aquatic fluxes, and b) understand what controls and drives individual fluxes within this budget. This understanding was further developed by a short study of C exchange at the peat-aquatic interface at Mer Bleue peatland, Canada. Significant variability in soil-atmosphere fluxes of both CH4 and N2O emissions was evident at Auchencorth Moss; coefficients of variation across 21 field chambers were 300% and 410% for CH4 and N2O, respectively. Both in situ chamber measurements and a separate mesocosm study illustrated the importance of vegetation in controlling CH4 emissions. In contrast to many previous studies, CH4 emissions were lower and uptake greater where aerenchymous vegetation was present. Water table depth was also an important driver of variability in CH4 emissions, although the effect was only evident during either periods of extreme drawdown or when the water table was consistently near or above the peat surface. Significant pulses in both CH4 and N2O emissions were observed in response to fluctuations in water table depth. Despite the variability in CH4 and N2O emissions and the uncertainty in up-scaled estimates, their contribution to the total GHG and carbon budgets was minor. Concentrations of dissolved CO2 in peatland drainage waters ranged from a mean of 2.88 ± 0.09 mg C L-1 in the Black Burn, Scotland, to a mean of 7.64 ± 0.80 mg C L-1 in water draining Mer Bleue, Canada. Using non-dispersive infra-red (NDIR) CO2 sensors with a 10-minute measurement frequency, significant temporal variability was observed in aquatic CO2 concentrations at the 2 contrasting field sites. However, the drivers of this variability differed significantly. At Mer Bleue, Canada, biological activity in the water column led to clear diurnal cycles, whereas in the Black Burn draining Auchencorth Moss, dilution due to discharge was the primary driver. The NDIR sensor data also showed differences in soil-stream connectivity both between the sites (connectivity was weak at Mer Bleue) and across the range of conditions measured at Auchencorth Moss i.e. connectivity increased during periods of stormflow. Compiling the results from both the terrestrial and aquatic systems at Auchencorth Moss indicated that the catchment was functioning as a net sink for GHGs (382 kg CO2-eq ha-1 yr-1) and a net source of carbon (143 kg C ha-1 yr-1). The greatest flux of GHGs was via net ecosystem exchange (NEE). Terrestrial emissions of CH4 and N2O combined returned only ~5% of CO2-equivalents captured by NEE to the atmosphere, whereas evasion of CO2, CH4 and N2O from the stream surface returned ~40%. The budgets clearly show the importance of aquatic fluxes at Auchencorth Moss and highlight the potential for significant error in source/sink strength calculations if they are omitted. Furthermore, the process based understanding of soil-stream connectivity suggests the aquatic flux pathway may play an increasingly important role in the source-sink function of peatlands under future management and climate change scenarios

    Temporal changes in photoreactivity of dissolved organic carbon and implications for aquatic carbon fluxes from peatlands

    Get PDF
    Aquatic systems draining peatland catchments receive a high loading of dissolved organic carbon (DOC) from the surrounding terrestrial environment. Whilst photo-processing is known to be an important process in the transformation of aquatic DOC, the drivers of temporal variability in this pathway are less well understood. In this study, 8 h laboratory irradiation experiments were conducted on water samples collected from two contrasting peatland aquatic systems in Scotland: a peatland stream and a reservoir in a catchment with high percentage peat cover. Samples were collected monthly at both sites from May 2014 to May 2015 and from the stream system during two rainfall events. DOC concentrations, absorbance properties and fluorescence characteristics were measured to investigate characteristics of the photochemically labile fraction of DOC. CO2 and CO produced by irradiation were also measured to determine gaseous photoproduction and intrinsic sample photoreactivity. Significant variation was seen in the photoreactivity of DOC between the two systems, with total irradiation-induced changes typically 2 orders of magnitude greater at the high-DOC stream site. This is attributed to longer water residence times in the reservoir rendering a higher proportion of the DOC recalcitrant to photo-processing. During the experimental irradiation, 7 % of DOC in the stream water samples was photochemically reactive and direct conversion to CO2 accounted for 46 % of the measured DOC loss. Rainfall events were identified as important in replenishing photoreactive material in the stream, with lignin phenol data indicating mobilisation of fresh DOC derived from woody vegetation in the upper catchment. This study shows that peatland catchments produce significant volumes of aromatic DOC and that photoreactivity of this DOC is greatest in headwater streams; however, an improved understanding of water residence times and DOC input–output along the source to sea aquatic pathway is required to determine the fate of peatland carbon

    Growing season CH4 and N2O fluxes from a subarctic landscape in northern Finland; from chamber to landscape scale

    Get PDF
    Subarctic and boreal emissions of CH4 are important contributors to the atmospheric greenhouse gas (GHG) balance and subsequently the global radiative forcing. Whilst N2O emissions may be lower, the much greater radiative forcing they produce justifies their inclusion in GHG studies. In addition to the quantification of flux magnitude, it is essential that we understand the drivers of emissions to be able to accurately predict climate-driven changes and potential feedback mechanisms. Hence this study aims to increase our understanding of what drives fluxes of CH4 and N2O in a subarctic forest/wetland landscape during peak summer conditions and into the shoulder season, exploring both spatial and temporal variability, and uses satellite-derived spectral data to extrapolate from chamber-scale fluxes to a 2 km  ×  2 km landscape area. From static chamber measurements made during summer and autumn campaigns in 2012 in the Sodankylä region of northern Finland, we concluded that wetlands represent a significant source of CH4 (3.35 ± 0.44 mg C m−2 h−1 during the summer campaign and 0.62 ± 0.09 mg C m−2 h−1 during the autumn campaign), whilst the surrounding forests represent a small sink (−0.06 ± < 0.01 mg C m−2 h−1 during the summer campaign and −0.03 ± < 0.01 mg C m−2 h−1 during the autumn campaign). N2O fluxes were near-zero across both ecosystems. We found a weak negative relationship between CH4 emissions and water table depth in the wetland, with emissions decreasing as the water table approached and flooded the soil surface and a positive relationship between CH4 emissions and the presence of Sphagnum mosses. Temperature was also an important driver of CH4 with emissions increasing to a peak at approximately 12 °C. Little could be determined about the drivers of N2O emissions given the small magnitude of the fluxes. A multiple regression modelling approach was used to describe CH4 emissions based on spectral data from PLEIADES PA1 satellite imagery across a 2 km  ×  2 km landscape. When applied across the whole image domain we calculated a CH4 source of 2.05 ± 0.61 mg C m−2 h−1. This was significantly higher than landscape estimates based on either a simple mean or weighted by forest/wetland proportion (0.99 ± 0.16, 0.93 ± 0.12 mg C m−2 h−1, respectively). Hence we conclude that ignoring the detailed spatial variability in CH4 emissions within a landscape leads to a potentially significant underestimation of landscape-scale fluxes. Given the small magnitude of measured N2O fluxes a similar level of detailed upscaling was not needed; we conclude that N2O fluxes do not currently comprise an important component of the landscape-scale GHG budget at this site

    Effects of peatland management on aquatic carbon concentrations and fluxes

    Get PDF
    Direct land-to-atmosphere carbon exchange has been the primary focus in previous studies of peatland disturbance and subsequent restoration. However, loss of carbon via the fluvial pathway is a significant term in peatland carbon budgets and requires consideration to assess the overall impact of restoration measures. This study aimed to determine the effect of peatland land management regime on aquatic carbon concentrations and fluxes in an area within the UK's largest tract of blanket bog, the Flow Country of northern Scotland. Three sub-catchments were selected to represent peatland land management types: non-drained, drained, and restoration (achieved through drain blocking and tree removal). Water samples were collected on a fortnightly basis from September 2008 to August 2010 at six sampling sites, one located upstream and one downstream within each sub-catchment. Concentrations of dissolved organic carbon (DOC) were significantly lower for the upstream non-drained sub-catchment compared to the drained sub-catchments, and there was considerable variation in the speciation of aquatic carbon (DOC, particulate organic carbon (POC), CO2, and CH4) across the monitoring sites, with dissolved gas concentrations inversely correlated with catchment area and thereby contributing considerably more to total aquatic carbon in the smaller headwater catchments. Significantly higher POC concentrations were observed in the restored sub-catchment most affected by tree removal. Aquatic carbon fluxes were highest from the drained catchments and lowest from the non-drained catchments at 23.5 and 7.9 g C m−2 yr−1, respectively, with variability between the upstream and downstream sites within each catchment being very low. It is clear from both the aquatic carbon concentration and flux data that drainage has had a profound impact on the hydrological and biogeochemical functioning of the peatland. In the restoration catchment, carbon export varied considerably, from 21.1 g C m−2 yr−1 at the upper site to 10.0 g C m−2 yr−1 at the lower site, largely due to differences in runoff generation. As a result of this hydrological variability, it is difficult to make definitive conclusions about the impact of restoration on carbon fluxes, and further monitoring is needed to corroborate the longer-term effects

    The import and export of organic nitrogen species at a Scottish ombrotrophic peatland

    Get PDF
    Dissolved organic nitrogen (DON) contributes significantly to the overall nitrogen budget, but is not routinely measured in precipitation or stream water. In order to investigate the contribution of DON to the deposition and export of N, precipitation, stream and soil water samples were collected from an ombrotrophic peatland and analysed for DON over a 2-year period. In wet-only deposition DON contributed up to 10 % of the total dissolved nitrogen (TDN) and was the most dominant fraction in soil water (99 %) and stream water (75 %). NH4 + was the most dominate form of N in precipitation, with NO3 - contributing the least to precipitation, soil water and stream water. Precipitation and stream DON were qualitatively analysed by a two-dimensional gas chromatograph coupled to a nitrogen chemiluminescence detector (GC × GC-NCD) after trapping onto C18 solid phase extraction (SPE) cartridges. Ten unique compounds were detected and five identified as pyrrole, benzonitrile, dodecylamine, N-nitrosodipropylamine and decylamine. Five compounds were present in both precipitation and stream samples: pyrrole, benzonitrile and three unidentified compounds. The SPE-extraction efficiency for DON was very low (11 %), but with improvements DON speciation could become a valuable tool to provide information on its sources and pathways and inform chemical transport models

    Carbon concentrations in natural and restoration pools in blanket peatlands

    Get PDF
    Open-water perennial pools are common natural features of peatlands globally, and peatland restoration often results in new pool creation, yet the concentrations of different forms of aquatic carbon (C) in natural and artificial restoration pools are not well studied. We compared carbon concentrations in both natural pools and restoration pools (4–15 years old) on three blanket peatlands in northern Scotland. At all sites, restoration pools were more acidic and had mean dissolved organic carbon (DOC) concentrations in restoration pools of 23, 22, and 31 mg L−1 compared with natural pool means of 11, 11 and 15 mg L−1 respectively across the three sites. Restoration pools had a greater fulvic acid prevalence than the natural pools and their DOC was more aromatic. Restoration pools were supersaturated with dissolved CO2 at around 10 times atmospheric levels, whereas for natural pools, CO2 concentrations were just above atmospheric levels. Dissolved CH4 concentrations were not different between pool types, but were ~200 times higher than atmospheric levels. Regular sampling at one of the peatland sites over 2.5 years showed that particulate organic carbon (POC) concentrations were generally below 7 mg L−1 except during the warm, dry summer of 2013. At this regularly-sampled site, natural pools were found to process DOC so that mean pool outflow concentrations in overland flow were significantly lower than mean inflow DOC concentrations. Such an effect was not found for the restoration pools. Soil solution and pool water chemistry, and relationships between DOC and CO2 concentrations suggest that different processes are controlling the transformation of C, and therefore the form and amount of C, in natural pools compared to restoration pools

    Water-level dynamics in natural and artificial pools in blanket peatlands

    Get PDF
    Perennial pools are common natural features of peatlands and their hydrological functioning and turnover may be important for carbon fluxes, aquatic ecology and downstream water quality. Peatland restoration methods such as ditch blocking result in many new pools. However, little is known about the hydrological function of either pool type. We monitored six natural and six artificial pools on a Scottish blanket peatland. Pool water levels were more variable in all seasons in artificial pools having greater water level increases and faster recession responses to storms than natural pools. Pools overflowed by a median of 9 and 54 times pool volume per year for natural and artificial pools respectively but this varied widely because some large pools had small upslope catchments and vice versa. Mean peat water-table depths were similar between natural and artificial pool sites but much more variable over time at the artificial pool site, possibly due to a lower bulk specific yield across this site. Pool levels and pool-level fluctuations were not the same as those of local water tables in the adjacent peat. Pool level time-series were much smoother, with more damped rainfall or recession responses than those for peat water tables. There were strong hydraulic gradients between the peat and pools, with absolute water tables often being 20-30 cm higher or lower than water levels in pools only 1-4 m away. However, as peat hydraulic conductivity was very low (median of 1.5×10-5 and 1.4×10-6 cm s-1 at 30 and 50 cm depths at the natural pool site) there was little deep subsurface flow interaction. We conclude that: 1) for peat restoration projects, a larger total pool surface area is likely to result in smaller flood peaks downstream, at least during summer months, because peatland bulk specific yield will be greater; and 2) surface and near-surface connectivity during storm events and topographic context, rather than pool size alone, must be taken into account in future peatland pool and stream chemistry studies

    Methane emissions from soils: synthesis and analysis of a large UK data set

    Get PDF
    Nearly 5000 chamber measurements of CH4 flux were collated from 21 sites across the UK, covering a range of soil and vegetation types, to derive a parsimonious model that explains as much of the variability as possible, with the least input requirements. Mean fluxes ranged from -0.3 to 27.4 nmol CH4 m−2 s−1, with small emissions or low rates of net uptake in mineral soils (site means of -0.3 to 0.7 nmol m−2 s−1) and much larger emissions from organic soils (site means of -0.3 to 27.4 nmol m−2 s−1). Less than half of the observed variability in instantaneous fluxes could be explained by independent variables measured. The reasons for this include measurement error, stochastic processes and, probably most importantly, poor correspondence between the independent variables measured and the actual variables influencing the processes underlying methane production, transport and oxidation. When temporal variation was accounted for, and the fluxes averaged at larger spatial scales, simple models explained up to ~75% of the variance in CH4 fluxes. Soil carbon, peat depth, soil moisture and pH together provided the best sub-set of explanatory variables. However, where plant species composition data were available, this provided the highest explanatory power. Linear and non-linear models generally fitted the data equally well, with the exception that soil moisture required a power transformation. To estimate the impact of changes in peatland water table on CH4 emissions in the UK, an emission factor of +0.4 g CH4 m−2 y−1 per cm increase in water table height was derived from the data

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Global carbon dioxide efflux from rivers enhanced by high nocturnal emissions

    Get PDF
    Carbon dioxide (CO2) emissions to the atmosphere from running waters are estimated to be four times greater than the total carbon (C) flux to the oceans. However, these fluxes remain poorly constrained because of substantial spatial and temporal variability in dissolved CO2 concentrations. Using a global compilation of high-frequency CO2 measurements, we demonstrate that nocturnal CO2 emissions are on average 27% (0.9 gC m−2 d−1) greater than those estimated from diurnal concentrations alone. Constraints on light availability due to canopy shading or water colour are the principal controls on observed diel (24 hour) variation, suggesting this nocturnal increase arises from daytime fixation of CO2 by photosynthesis. Because current global estimates of CO2 emissions to the atmosphere from running waters (0.65–1.8 PgC yr−1) rely primarily on discrete measurements of dissolved CO2 obtained during the day, they substantially underestimate the magnitude of this flux. Accounting for night-time CO2 emissions may elevate global estimates from running waters to the atmosphere by 0.20–0.55 PgC yr−1
    corecore