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Abstract 

Perennial pools are common natural features of peatlands and their hydrological functioning 

and turnover may be important for carbon fluxes, aquatic ecology and downstream water 

quality. Peatland restoration methods such as ditch blocking result in many new pools. 

However, little is known about the hydrological function of either pool type. We monitored 

six natural and six artificial pools on a Scottish blanket peatland. Pool water levels were more 

variable in all seasons in artificial pools having greater water level increases and faster 

recession responses to storms than natural pools. Pools overflowed by a median of 9 and 54 

times pool volume per year for natural and artificial pools respectively but this varied widely 

because some large pools had small upslope catchments and vice versa. Mean peat water-

table depths were similar between natural and artificial pool sites but much more variable 

over time at the artificial pool site, possibly due to a lower bulk specific yield across this site. 

Pool levels and pool-level fluctuations were not the same as those of local water tables in the 

adjacent peat. Pool level time-series were much smoother, with more damped rainfall or 

recession responses than those for peat water tables. There were strong hydraulic gradients 

between the peat and pools, with absolute water tables often being 20-30 cm higher or lower 

than water levels in pools only 1-4 m away. However, as peat hydraulic conductivity was 

very low (median of 1.510-5 and 1.410-6 cm s-1 at 30 and 50 cm depths at the natural pool 

site) there was little deep subsurface flow interaction. We conclude that: 1) for peat 

restoration projects, a larger total pool surface area is likely to result in smaller flood peaks 

downstream, at least during summer months, because peatland bulk specific yield will be 

greater; and 2) surface and near-surface connectivity during storm events and topographic 

context, rather than pool size alone, must be taken into account in future peatland pool and 

stream chemistry studies. 

 

Keywords: peatland, pools, water level, restoration, wetland, ponds 
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1. Introduction 

Peatlands are important carbon stores (Yu, 2012) covering around 423 million hectares of the 

land surface (Xu et al., 2018). Their expanse increased during the Holocene, particularly in 

the northern high latitudes after deglaciation, where a cool, wet climate is co-located with 

low-lying basins and other areas of poor drainage (Yu et al., 2010). Even on upland terrain 

with slopes as great as 15o, blanket peatlands have developed in many temperate 

hyperoceanic regions including parts of Atlantic northwest Europe, eastern and western 

Canada, southern Alaska, Tasmania, the South Island of New Zealand, the southern tip of 

South America and eastern Russia (Gallego-Sala and Prentice, 2012).  

 

Peatlands are characterised by shallow water tables and are capable of storing very large 

volumes of water since peat soils often have porosities > 95 % (Ingram, 1983; Hobbs, 1986). 

In addition to the peat volumetric water store, peatlands often contain open-water pools 

(Glaser, 1998). Multiple hypotheses have been proposed for natural pool formation and 

expansion in peatlands (cf.  Belyea and Lancaster, 2002), but surprisingly little is known 

about the hydrological functioning of peatland pools. In some northern peatlands the surface 

area of pools can be as much as 90 % of the total peatland area (e.g. Sjors, 1983) but pools 

more typically represent 5-30 % of the land area where they are present (e.g. Foster and 

Glaser, 1985; Roulet et al., 1994). Peatland pools are important for aquatic biodiversity, 

particularly when there is a wide variety of pool sizes (Downie et al., 1998; Beadle et al., 

2015). They are also often 'hotspots' of carbon dioxide and methane emissions (Hamilton et 

al., 1994; Waddington and Roulet, 1996; Pelletier et al., 2014) and as such they are likely to 

process dissolved and particulate organic carbon altering dissolved and particulate carbon 

concentrations and characteristics in pools (Pickard, 2016; Turner et al., 2016), potentially 

influencing downstream water chemistry. Their hydrological functioning is likely to control 
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how pools process carbon, yet little is known about hydrological processes associated with 

pools in peatlands. During rainfall pools may spill over, delivering water to other parts of the 

peatland or to nearby stream networks (Quinton and Roulet, 1998). Rates of pool water 

turnover have not been reported but could affect overall water residence times in peatlands, 

which in turn may be important in controlling peat decomposition rates (Beer and Blodau, 

2007; Morris and Waddington, 2011) or streamwater chemistry. However, these functions 

have not previously been tested for natural pool systems in blanket peatlands. 

 

Two previous short-term studies of pool hydrological function in fens and raised bogs in 

Canada have shown that pools can provide significant depression storage for rainfall thereby 

greatly reducing runoff from the system (Price and Maloney, 1994; Quinton and Roulet, 

1998). Quinton and Roulet (1998) studied a narrow, valley bottom pool-patterned fen for four 

months and found it was dominated by two distinct phases of operation: (1) an overflow 

phase during spring melt and one large summer storm when water supply exceeded the 

depression storage capacity and the pools effectively coalesced producing diffuse surface 

runoff, and (2) a summer phase, without spill over, when pools were disconnected, with slow 

rates of groundwater inputs which were around an order of magnitude less than pool 

evaporation rates. A six-week study of a small fen and raised bog in Labrador indicated that 

the catchment runoff ratio was < 0.15 with the pools enhancing evaporative losses (Price and 

Maloney, 1994). For the systems studied, Price and Maloney (1994) noted that pool position 

relative to the local topography and the location of peat pipes connected to pools were both 

important for controlling pool inflows and outflows, although pipe flows, pool outflow rates 

and pool levels were not directly measured. There have been no detailed studies of pool 

hydrological function in blanket peatlands and no natural pool hydrological function studies 

for any type of peatland that have continued for periods of more than a few months. 
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Many northern peatlands have been drained for peat extraction, forestry and agriculture (e.g. 

Höper et al., 2008). For example, drainage ditch construction was common practice between 

the 1940s and 1980s in the UK, where blanket peat covers around 7 % of the land surface 

(Baird et al., 2009). Such drainage did not achieve its aim of enhancing agricultural 

productivity (Stewart and Lance, 1983), but led to environmental problems including erosion 

(Mayfield and Pearson, 1972; Holden et al., 2007) and, in some places, to enhanced losses of 

dissolved organic carbon into streams and rivers (Mitchell, 1990; Mitchell and McDonald, 

1995; Armstrong et al., 2010). In common with many areas of the world (cf. Höper et al., 

2008) where peatlands have been damaged by artificial drainage, ditches in UK peatlands are 

being blocked. This restoration activity results in the creation of thousands of small pools 

within the blocked ditches, which in sum can amount to a large area of open water (Parry et 

al., 2014; Brown et al., 2016; Holden et al., 2017). It is not known to what extent the 

hydrological functioning of these artificial peatland pools is similar to that of natural pools. 

Price et al. (2002) studied experimental artificial pools installed in a cutover plateau bog in 

Québec. They did not measure pool water levels but measured the water tables and soil 

tension in the surrounding peat on 76 days during the study compared to a control cutover 

treatment without pool creation, showing that water-tables were more stable following pool 

creation. This reduction in water-table variability has also been found on some sites with 

ditch-blocked pools in upland blanket peat in the British Isles (Holden et al., 2011). This is to 

be expected because the specific yield of a pool is 1 whereas the specific yield of peat is 

substantially less than one; if a significant proportion of a peatland is taken up by pools, its 

bulk specific yield will be higher than that of the peat itself. 

 

The paucity of data on peatland pool hydrological functioning means that we lack 

understanding of whether peatland open-water pool levels and their fluctuations are similar 
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between artificial and natural systems. There have been no detailed inter-annual studies of 

natural peatland pool hydrological function. We also lack basic understanding of whether 

water levels in pools and their fluctuations in response to rainfall or evaporation simply 

reflect those of the water table in the surrounding peat. It may be that either: (1) pool water 

levels are well connected to local water-table levels and fluctuations in the surrounding peat; 

or (2) the two systems are partly independent of each other in terms of their hydrological 

functioning. Furthermore, pool water volume replacement and spill over rates have never 

been measured in blanket peatlands before. Here we report on a study in which we compared 

the hydrological functioning of natural and artificial blanket peatland pools. For a site in 

which both pool types were in close proximity, we investigated pool water-level dynamics, 

established rates of pool water replenishment (turnover), and examined water-table 

fluctuations in the peat surrounding the pools. 

 

2. Methods 

Six natural pools (Pools 1-6) and six artificial pools (Pools 7-12) were chosen for 

investigation (Figure 1) at Cross Lochs peatland in the Flow Country, northern Scotland (58° 

22’ N, 03° 57’ W), at ~215 m altitude (Figure 1) between 2013 and 2016. The Flow Country 

bog system is the UK's largest single tract of peatland covering ~4000 km2 (Ingram, 1987; 

Lindsay et al., 1988). It has many intact pool systems similar to those in a range of other 

blanket bog systems in Scotland (e.g. Boatman, 1983; Ratcliffe and Oswald, 1988; Belyea, 

2007)  and peatland pool systems in continental settings (e.g. Glaser, 1998). The climate of 

the area is cool with a mean annual temperature for 1981-2010 of 7.6°C and a mean annual 

precipitation of 1196 mm for Altnaharra meteorological station, ~30 km from Cross Lochs. 

While snowfall may occur at the site in winter, it is synoptically controlled and will often 

melt completely within a few days. Rainfall is much more common in winter than snow. Peat 
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depths at the site were measured using rod probing and ranged from 0.94 m to 4.00 m which 

is in line with earlier surveys in the area (Ratcliffe and Payne, 2016). The underlying geology 

forms part of the Moine Supergroup with Pre-Cambrian migmatitic pelite and semipelite 

metamorphic rocks. The vegetation is dominated by mosses, sedges and small shrubs. 

Mosses mainly include Sphagnum cuspidatum, S. denticulatum, S. fallax, S. capillifolium, S. 

subnitens, S. papillosum S. tenellum and Racomitrium lanuginosum. Liverworts such as 

Plurozia purporea are abundant at the site. Sedges, mainly Eriophorum vaginatum and E. 

angustifolium and small shrubs, mainly Calluna vulgaris and Erica tetralix, are widespread. 

   

The natural and artificial pool sites were close to each other (within c. 400 – 600 m; Figure 

1). The mean slope was 0.04 across the natural pool site and 0.05 m m-1 across the artificial 

pool site. Pools covered 8.6 % of the surface area of the natural pool site and 0.7 % of the 

artificial pool site. The northwest section of Figure 1 shows a nearby block that was subject 

to plantation forestry which has been felled. However, this forest restoration block is beyond 

the drainage divide and does not interact with the natural or artificial pool sites we studied. 

The selected pools were deemed to be representative of the pools across the site. Pools, 

particularly natural pools, often have uneven beds and so transects in two directions across 

each pool were surveyed to calculate pool depths; for the larger pools this resulted in around 

30 depth measurements per pool whereas for small (~< 9m2) pools there were 4-10 depth 

measurements per pool. Natural pools ranged in size from 9 m2 to 868 m2 (Table 1) while the 

range of sizes for artificial pools was much smaller at 1 m2 to 6 m2. The catchment area for 

each pool was calculated based on surface topography and the approximate length of the 

perimeter that received surface water from an upslope topographic area was also determined 

(Table 1). For most of the natural pools more than half of their perimeter received water from 

upslope, whereas for all of the artificial pools less than a third of their perimeter received 
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surface drainage water from upslope. The mean water heights above pool bed for natural and 

artificial pools were comparable (38 cm and 39 cm respectively; Table 1). The artificial pools 

were created behind peat dams constructed in 2002, located within artificial drainage ditches 

that had been dug in the 1970s. The artificial pools were constructed in a typical manner for 

blanket peatlands in the UK (Parry et al., 2014) with peat excavated from one side of the 

ditch at the dam location, thereby widening the ditch at the location where the pool is formed. 

The excavated peat was used to form the dam, with the original vegetation layer from the 

excavated peat placed onto the dam top to help stabilise it. Only one artificial pool per ditch 

was chosen for study. 

 

Meteorological data were collected on site using a Davis Vantage Pro 2 automatic weather 

station. Open water evaporation from the pools was calculated using the Penman (1948) open 

water equation which is physically based and uses temperature, relative humidity, wind speed 

and solar radiation data. The equation has been shown to be robust during comparison studies 

with other equations or directly measured rates of open water evaporation (Linacre, 1993; 

McMahon et al., 2016).  

 

Wooden boarding was used at key locations to minimise the impacts of disturbance during 

site visits and snow shoes were used throughout the year to reduce the effects of foot traffic 

on the peat system. All pools were instrumented in late May 2013 with automated water-level 

loggers (In Situ Level TROLL 500, accuracy ± 3 mm) housed within slotted stilling wells and 

set to record at 15-minute intervals. Here we consider data collected between 1st July 2013 

and 28th January 2016. Pool water level data are either reported as water height above pool 

bed or as depth-below-peat-surface’ (DBPS) (distance from the peat surface on the pool edge 

down to the water surface in the pool). A peat-surface datum was used close to the stilling 
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well in each pool. However, it should be noted that the topography of pool perimeters varies 

so that the distance from the peat surface to the pool water surface also varies along the pool 

perimeter. At some locations along the pool perimeter the DBPS may be several cm, while at 

other points along the perimeter it may be zero and water may be spilling out from the pool. 

A repeated-measures ANOVA was used to test for differences in DBPS between seasons 

(winter = December to February; spring = March to May, summer = June to August, autumn 

= September to November) and pool type. SAS v9.4 was used for statistical analysis; all data 

were checked for normal distribution and a p level of 0.05 was used for significance. For the 

repeated measures ANOVA, the data were tested using Mauchly’s test for sphericity, and a 

polynomial transformation carried out.  

 

For each pool, DBPS responses to the 20 largest storm events observed over the monitoring 

period were analysed. The DBPS values for each pool before each storm commenced, and the 

smallest DBPS values during or immediately after each storm, were determined along with 

the lag time from rain start to smallest DBPS. Pool level recession responses were also 

analysed by extracting the DBPS values 6 hours and 12 hours after the smallest DBPS values 

were recorded and a recession rate calculated in cm hr-1
. Two-sample t-tests were used to test 

for differences in storm response variables, including recession rates, between the natural and 

artificial pools.  

 

Crest-stage tubes (Burt and Gardiner, 1984), with holes placed flush with the peat surface 

were used to collect overland flow on the peat at the upslope end of each pool and at the 

downstream exit points of each pool. These tubes were checked during each site visit (47 in 

total between June 2013 and January 2016) and a record kept of whether they were full or 

empty. If they contained water they were emptied. 
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Ten PVC dipwells, with a 28.4 mm inside diameter and with 8 mm diameter holes drilled at 

50 mm intervals along their length (two lines of holes along the dipwells), were installed in 

July 2013. A  dipwell was installed in the peat 1 m away from each pool, but because Pools 3 

and 4 were close to each other, and also Pools 5 and 6, one dipwell was located between each 

of these pairs (still around 1 m from pool edges), giving 10 dipwells in total. Water tables 

were manually measured using a dipmeter on each site visit until January 2016. In May 2015 

an additional ten dipwells were installed with six located in the natural pool system and four 

in the artificial pool system, each of which was instrumented with an In Situ Level TROLL 

500 logger to record water tables at 15-minute intervals. The instrumented dipwells at the 

natural site were located next to two pools, with a dipwell upslope, midslope (i.e., at the side 

of the pool) and downslope of Pool 1 (coded P1U, P1M, P1D) and Pool 4 (P4U, P4M, P4D). 

At the artificial site the instrumented dipwells were located upslope and downslope of Pools 8 

and 11 (P8U, P8D, P11U, P11D). All dipwells were located between 1 and 4 m from pool 

edges (1.5 to 2 m away in the case of the artificial pools). Response time tests were carried 

out on the dipwells, with full recovery after slug withdrawal occurring within 15 minutes in 

all cases indicating that the dipwell data are reliable. A topographic survey of all dipwells and 

stilling wells at the two sites allowed the water-table depths to be compared between the 

pools and instrumented dipwells, relative to a datum at each site. Eleven large storm events 

occurred during the period when automated dipwell data were available. Water-table data 

were extracted from the automated dipwell records for these storms using the same approach 

as for pool levels described above, and were analysed using a one-way ANOVA with a post-

hoc Tukey test. 

 

Hydraulic conductivity (K) was measured in the peat at the natural pool site using piezometer 

slug withdrawal tests. Piezometers were constructed from high-density polyethylene, with a 

3.2 cm outside diameter and 2.5 cm inside diameter, and were installed into pre-augured 
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holes and then ‘developed’ to remove any smeared peat from around the intake holes (Baird 

et al., 2004). The intakes were 10 cm long and had a pattern of perforation the same as that 

reported in Baird et al. (2004). K was determined at 20 locations where the intakes covered 

depths of 45 to 55 cm (hereafter termed 50 cm depth) and 20 locations where depths of 25-35 

cm were sampled (hereafter termed 30 cm depth). K was calculated using the method (based 

on Hvorslev (1951)) reported in Baird et al. (2004) and were corrected to a temperature of 

20oC. Von Post scores for the peat at the intake depths, extracted when the piezometer holes 

were augered out, were determined using the descriptions given in Table 5.2 in Rydin and 

Jeglum (2006).  

 

 

3. Results 

 

DBPS values were significantly shallower for natural pools than for artificial pools (p<0.01), 

and the repeated-measures ANOVA showed that there were significant differences between 

seasons (p<0.01). Following a dry first summer (2013) after instrument installation (111 mm 

rainfall; Table 2), DBPS values in the 12 pools were greater throughout the subsequent winter 

than they were in the next two winters, showing inter-annual variability in pool levels even 

for winter months (Figure 2). The larger DBPS values- (i.e. lower water levels in pools) in 

winter 2013/14 compared to the other winters also stand out because 2013/14 was by far the 

wettest of the three winters studied (Table 2). The largest variability in DBPS occurred 

during summer. Except for autumn 2013, DBPS values in the artificial pools in all seasons 

and all years were more variable than those in the natural pools (Table 2).  

 

Irrespective of pool type, evaporation losses were equivalent to around 42 % of direct rainfall 

inputs to the pools across the whole study. During summer, evaporative losses from pools 

exceeded direct input rainfall, whereas for the remaining seasons evaporative losses were 
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lower than direct rainfall received by the pools (Table 2). However, the depth of evaporative 

loss was larger in two of the summers than the mean difference between winter and summer 

pool levels for both natural and artificial pools showing that pools must receive some inflow 

water from overland flow or from the surrounding peat. The net surplus of water at other 

times of the year means that pools must overflow and send water downslope. Considering the 

topographic contributing area for each pool and evaporation losses, the net outflow from 

pools across or through the peat downslope equated to a median of 9 and 54 times pool 

volume per year for the natural and artificial pools respectively (Table 3). However, there 

was a wide variability in the number of times per year the equivalent pool water volume was 

replaced between pools (2 to 402 for natural pools and 19 to 714 for the artificial pools), 

largely driven by the fact that some large pools (e.g. Pool 1) had a small upslope contributing 

area compared to the pool area (Table 1). Holden et al. (2017) showed that the catchment 

areas of ditches on a Welsh blanket bog could not be determined from their topographic 

surface area alone. Therefore, the subsurface catchment area for the pools may not exactly 

match their surface catchment area and our values of pool catchment area should be 

considered estimates.  

 

Overland flow was a common occurrence across the site. On average (median) the upslope 

crest-stage tubes had captured overland flow between visits 83 and 84% of the time for the 

natural and artificial pools respectively, while for the downslope sites overland flow occurred 

between 77 and 83% of visits for the natural and artificial pools respectively. 

 

There was a significant difference (p=0.01) in the changes in water height above pool bed  

during storm events between the two types of pools; the artificial pools had a significantly 

greater water level change in response to rain (mean change 3.6 cm) than the natural pools 
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(mean change 1.9 cm). A regression analysis showed the relationship between cumulative 

rain in an event and the change in pool water height above bed was: [Natural pool surface 

level change (cm) = 0.016  mm of rain + 1.420] and [Artificial pool water level change (cm) 

= 0.016  mm of rain + 2.894], both having the same gradients. There was a significant 

difference between the mean response time for pools to reach peak level between the two 

treatments (p=0.03; natural mean = 17.6 hrs, artificial mean = 14.6 hrs). Pool water heights 

above bed fell significantly (p<0.01) more quickly in the 6 and 12 hour periods after rainfall 

in the artificial pools compared to the natural pools (Table 4). The mean recession rate was 

greater for every artificial pool compared to any of the natural pools. Tests of correlation 

between annual pool outflow or turnover frequency (Table 3) and all of the storm response 

variables shown in Table 4 were conducted but only two combinations of variables were 

significantly correlated: annual pool outflow and smallest DBPS during storm (natural pools, 

r=0.80, p=0.03); annual pool outflow and 6-hr recession rate (artificial pools, r=0.74, 

p=0.04). 

 

Mean water-table depths in the manually measured dipwells over the entire study period were 

4.7 cm in the peat around the natural pool system and 3.7 cm in the peat around the artificial 

pool system. However, water-table depths tended to have a greater range in the peat around 

the artificial pools than in the peat around the natural pools (Figure 3).  

 

The automated water-table records are only available from May 2015 to January 2016. 

During this period the average water-table depth (relative to the peat surface) at the natural 

site was 5.0 cm, compared with 4.0 cm at the artificial site, although this (apparent) 

difference was not significant. (p=0.28). As with the manual dipwell measurements, the 

standard deviations of the water-table depth were generally larger in the peat around the 
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artificial pools than in the peat around the natural pools (Table 5). Using water-table 

responses to individual rainfall events (rise to rain ratios (e.g. Bourgault et al., 2017)) we 

estimated the mean specific yield for the upper 20 cm of peat to be 0.24 (standard error = 

0.04) and 0.25 (standard error = 0.03) for the natural and artificial pool sites respectively. The 

storm event data showed that the relationship between water-table depth (cm) and the ratio of 

water-table rise to rainfall (unitless) was linear, increasing over depth with a gradient of 0.57. 

This is equivalent to a non-linear gradient of decline in specific yield with peat depth of: 

[1.75 /(water-table depth, cm)]. As the storm events studied did not cover periods of very 

deep water tables, we used the above relationship to extend estimates of specific yield to a 

peat depth of 40 cm, equivalent to the mean depth of the pools. This resulted in a mean 

specific yield of 0.22 for the upper 40 cm of peat. 

 

When comparing pool levels and peat water-table heights for the period when automated 

records were available for both, the range of water levels was smallest in the natural pools 

(mean range = 7.6 cm) and largest in peat water tables at the artificial pool site (mean range = 

19.3 cm). The range in water level was significantly different between the pools and peat 

dipwells at both the natural and artificial sites (one-way ANOVA on mean range water level, 

p < 0.01).Post-hoc Tukey tests showed the range was significantly lower in the natural pools 

than for artificial pools or peat water tables. There was no significant difference in range 

between water levels recorded in natural pool site dipwells and artificial pools, but a 

significantly higher range in the artificial pool site dipwells than pool levels at either site or 

than in the natural pool site dipwells. The mean relative water level for Pool 1 and the three 

nearest peat dipwells showed the downslope dipwell (P1D) had a lower absolute water-table 

height, the mid-slope dipwell (P1M) had a similar mean water-table height to the pool level 

and the upslope dipwell (P1U) had a higher mean water table (Figure 4). The mean difference 
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in relative water height between Pool 1 and the water table in the peat was -7.1, 0.5 and 10.9 

cm (P1U, P1M and P1D respectively). For Pool 4 the peat water tables were very different 

from pool water level (differences of -5.9, 22.5 and 30.3 cm for P4U, P4M and P4D 

respectively). At the artificial pool site, Pool 8 mean water level was 23.3 cm lower than 

mean water-table height at P8U and 11.0 cm higher than at P8D while Pool 11 mean level 

was 24.0 cm lower than water-table height at P11U and 9.0 cm higher than at P11D.  

 

The automated water-table records followed a similar seasonal pattern to the pools; the 

deepest mean water-tables were in summer (summer mean of 6.6 cm at the natural site and 

5.8 cm at the artificial site) and shallowest in winter (winter mean of 2.9 cm at the natural site 

and 1.9 cm at the artificial site). However, the automated record shows that pool-level 

fluctuations did not simply reflect local water-table dynamics (e.g. Figure 5). Peat water 

tables tended to decline more rapidly than pool levels during dry periods and there was a 

greater variability in water-table depth than pool level change. The pool level records show a 

much smoother, damped signal to rainfall or recession periods than the peat water-table 

records. In response to storm events water-table changes in the peat around artificial and 

natural pools were not significantly different. However, water-table changes in the peat were 

significantly different from water-level changes in both the natural and artificial pools; pool 

hydrological responses were significantly different between pool types (one-way ANOVA, 

p<0.01, confirmed with a post-hoc Tukey test). After peak levels had been achieved during 

storms, water heights fell significantly faster in the peat around the pools than water levels 

within the pools (one-way ANOVA, p<0.01). Recession rates were significantly higher for 

dipwells at the artificial sites than the water levels both in the natural and artificial pools 

(one-way ANOVA, p<0.01) in the 6 and 12 hour period after peak water levels, but there 

were no significant differences in the 6 and 12 hour recession responses in the peat water 
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tables between the natural and artificial sites. There was a significant difference between the 

mean response time to reach peak level between the pools and the dipwells (one-way 

ANOVA, p<0.01), and the water level responded fastest at the natural site in the peat around 

the pools, and slowest in the natural pools themselves. 

 

Given that dipwells were typically around 1 to 4 m away from pools, our results for relative 

height differences between peat water tables and pool levels (Figures 4 and 5, Table 5) 

suggest that there are strong hydraulic gradients on site. Deep flows between pools and the 

peat and vice versa must be very slow as peat water tables and pool levels are rather different, 

with absolute peat water-table levels often being 20 to 30 cm higher or lower than water 

levels in pools only a metre away. This is corroborated by our hydraulic conductivity data for 

the site. Median hydraulic conductivity at 30 cm and 50 cm depths was 1.5  10-5 cm s-1 

(interquartile range 2.2  10-5 cm s-1) and 1.4  10-6 cm s-1 (interquartile range 6.6  10-6 cm 

s-1) respectively. Von Post scores ranged from 2 to 9 at 30 cm depth (median = 7, n=20) and 5 

to 10 at 50 cm depth (median = 8, n=20). 

 

4. Discussion 

The DBPS values were significantly deeper and much more variable over time for the 

artificial pools than the natural pools. Thus, biogeochemical and carbon cycling processes 

within natural pools are unlikely to be replicated in artificial pools as their hydrological 

function is quite different. Artificial pool levels fell at a significantly faster rate immediately 

following rainfall events than water levels in natural pools. This enhanced fluctuation of pool 

levels in the artificial pools compared to natural pools may result in more frequent aeration of 

pool walls followed by flushing of the resultant dissolved organic carbon that may have been 

produced (Hamilton et al., 1994). Water-table variability was also greater in the peat at the 
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artificial pool site than in the nearby natural pool site, although both locations had relatively 

shallow mean water tables (within 5 cm of the peat surface).  

 

There are several reasons why pool level variability and water-table variability were so much 

greater at the artificial pool site. It may be that during high flow the artificial pools still retain 

some connectivity to the old ditch system with pools overflowing along the course of the old 

ditches enabling pool levels to fall more quickly after peak than in the natural pool system. 

The rapid rise and fall of pool levels at the artificial pool site was not simply a function of 

small catchment areas for each pool. Pools 10 and 12 were both among the top six largest 

combined catchment areas of all pools studied (i.e. pool area plus contributing area; Table 1) 

and yet had more rapid water level recessions (6 hr and 12 hr) after storms than any of the six 

natural pools. However, the mean slope was slightly greater at the artificial pool site (0.05 m 

m-1 compared with 0.04 m m-1) and the ratio of catchment area to pool area was typically 

greater for the artificial pools (Table 1). Thus we might expect a more rapid increase in pool 

level in response to rainfall for the artificial pools. It may also be that some peat properties 

affected by ditch drainage had not recovered in the 11 to 13 years since restoration and there 

may be enhanced macropore and pipe drainage in the peat around the artificial pools (Holden, 

2005; Holden et al., 2006). Holden et al. (2011) found for a blanket peatland in northern 

England that 6 to 7 years after ditch blocking at a site where drains predominantly ran across 

slope (roughly parallel to the contour), the peat water tables were still significantly deeper 

and much more variable than those in nearby undrained peat, but slightly less variable than 

those in nearby drained peat without drain blocking. Evidence from other sites suggests that 

where blanket peatland drains run largely downslope, similar to those at our site, ditch 

blocking may only have a very small impact on local water tables and peatland function, at 

least in the short term (Green et al., 2017; Holden et al., 2017). Another important factor 



 

This article is protected by copyright. All rights reserved. 

which could affect water-table and pool-level fluctuations is the bulk specific yield of the 

peatland. At the natural pool site there was a far greater proportion of the landscape that was 

open water than at the artificial pool site. The mean pool depth was ~40 cm and so 

considering only the upper 40 cm of the peatland, a specific yield of pools =1 , and mean 

specific yield for the upper 40 cm of peat = 0.22,  the bulk specific yield of the natural pool 

site was 0.28 while it was 0.22 for the artificial pool site. Therefore, given the same water 

input, the water level fluctuations would be expected to be greater at the artificial pool site 

than at the natural pool site. However, we also showed that pool levels and water-tables in the 

nearby peat were somewhat disconnected, with steep hydraulic gradients forming between 

the peat and nearby pools due to very low peat hydraulic conductivity. Therefore, the bulk 

specific yield concept may be of limited use in understanding the overall hydrological 

dynamics of blanket peat systems with pools. Nevertheless, the fact that pool DBPS values 

were on average 15 cm, still allows us to conclude that creating larger pool area in peatland 

restoration schemes may be beneficial in reducing downstream flood risk for some storms. 

These benefits may not be fully realised on occasions when the pools are already ‘full’ which 

is more likely in winter months when evaporation rates are small.  

 

Evaporation between rainfall events played a strong role in controlling pool level drawdown 

in the summer months meaning that variability in water levels was greatest at this time of 

year. The pool water levels were most drawn down during summer 2013, the first summer of 

monitoring. The subsequent winter was very wet but DBPS values in both the natural and 

artificial pool systems were generally greater in winter 2013 compared to the other two 

winters studied. It is not clear what caused this effect but such inter-annual variability in pool 

water levels, even in winter months may have implications for carbon cycling and release and 

the hydrological function of the peatland. It may be that the near-surface peat and pool sides 
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became desiccated and cracked during the unusually warm, dry summer of 2013 and this 

meant that in the subsequent winter (which was very wet) more water could percolate out of 

the pool sides near the top of the peat. Desiccation cracking is common in peatlands on bare 

peat faces during dry weather (Evans and Warburton, 2007) and macropore flow can be a 

very important pathway for water in near-surface blanket peat (Holden, 2009). It may have 

taken more than one winter for cracks to close up or seal with biofilms.  

 

We surveyed for natural peat pipes around our 12 study pools using an underwater camera 

and we were unable to detect them. Therefore unlike the Labradorean small fen and raised 

bog study of Price and Maloney (1994), pipes did not play a large role in pool functioning in 

our 12 study pools. 

However, we did observe piping at some of the other pools at the study site, where pipes 

provided one of several drainage routes for some pools and a water supply for other pools. 

We also found some cases where pipes connected pools to one another. Further work is 

required to establish whether the hydrological function of pipe-connected pools is different 

from those disconnected from peatland pipe networks. 

 

The smaller artificial pools spilled out, on average, water equivalent to 54 times the mean 

volume of the pool per year. This relative value was six times lower for the natural pools 

although the actual volume of water that flowed out of the six natural pools was around ten 

times greater than that from the artificial pools. These rates of pool ‘turnover’ may be 

important for peatland chemistry and peat accumulation rates (Beer and Blodau, 2007; Morris 

and Waddington, 2011) and for understanding aquatic carbon fluxes from peatlands with 

pools, particularly if the carbon processing is different between natural and artificial pool 

systems. Pools with longer water residence times may be subject to enhanced photochemical 
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processing of dissolved organic carbon (e.g. Pickard et al., 2017) (all pools were ≤ 50 cm 

deep); hence the quality of dissolved organic carbon may vary between pools which could be 

important for downstream water treatment for potable supply (Worrall and Burt, 2009; 

Moody and Worrall, 2017). On the other hand, the slower turnover of water in some larger 

pools may mean that the remaining carbon is largely recalcitrant and little further processing 

can occur, whereas in smaller pools processing of carbon can continue for longer periods if 

the pool water volume is replaced more frequently. McEnroe et al. (2009) showed that 

smaller pools had consistently larger carbon dioxide and methane fluxes than larger pools in a 

raised bog in Canada. It should also be noted that we found that the rates of pool water 

replacement were highly variable and the volumes of water produced were not related simply 

to pool size as the upslope catchment area of each pool was also critical. Some very large 

natural pools had a relatively small upslope catchment area. Thus when sampling blanket 

peatland pools for their aquatic chemistry (Turner et al., 2016) and also when considering 

potential impacts of pool processes on downstream river water chemistry, including aquatic 

carbon fluxes, and their role on carbon gas release to the atmosphere, it will be important in 

the future to consider pool topographic context and upslope contributing area in addition to 

pool dimensions. Pools of an equivalent size cannot be assumed to play an equivalent role in 

influencing aquatic fluxes from the peatland; pool size and their contributing area are both 

important. 

 

Water levels and their fluctuations in pools were not the same as water-table depths and 

fluctuations in the nearby peat. Pool water level changes were much more subdued and less 

variable than water-table changes in the nearby peat. It would be expected that peat water 

tables would be more variable during storm events than pool water levels. Even as little as 2 

mm of rainfall can often raise peat water tables by 2 to 4 cm as much of the pore space, even 
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in unsaturated peat, is typically occupied by water and there is little available space for fresh 

rainwater (Gilman, 1994; Evans et al., 1999; Bourgault et al., 2017; University of Leeds Peat 

Club, 2017). However, the long-term difference between pool levels and peat water-table 

heights at the study site was also striking. This is an important finding as it shows that the 

hydrological function of pools, even small artificial ones, is quite different from the 

hydrological function of the peat mass. The absolute water-table height and nearby pool 

water levels were generally not the same and there were often steep hydraulic gradients on 

site. However, as the peat hydraulic conductivity at depths of 30 cm and 50 cm was very low, 

very little subsurface flow may be occurring and so connectivity between the pools and the 

peat system must be greatest at the peat surface or within a few cm of the peat surface. Thus 

storm events are important for connecting the peat system to pool systems, enabling pool 

water replenishment and for flushing out of pools of potentially significant volumes of carbon 

and other nutrients that may have been processed within the pool. 
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Table 1. Pool physical characteristics 

 

Pool Pool 

surface 

area 

(m2) 

Length of 

pool 

perimeter  

(m) 

Length of 

pool 

perimeter 

receiving 

surface 

water from 

topographic 

area above 

pool (m) 

Mean 

pool 

water 

height 

above bed 

(m) 

Upslope 

surface 

catchment 

area (m2) 

Catchment 

area / Pool 

area 

Natural       

Pool 1 868 246 231 0.50 427 0.5 

Pool 2 39 25 21 0.42 1325 34.0 

Pool 3 9 19 8 0.30 1387 154.1 

Pool 4 115 58 44 0.43 177 1.5 

Pool 5 15 21 11 0.31 31 2.1 

Pool 6 24 19 10 0.30 89 3.7 

Artificial       

Pool 7 6 12 3.0 0.34 45 7.5 

Pool 8 2 8 2.5 0.37 77 38.5 

Pool 9 6 13 2.5 0.38 57 9.5 

Pool 10 4 8 1.5 0.39 1264 316.0 

Pool 11 1 7 2.0 0.43 21 21.0 

Pool 12 2 2 0.5 0.47 203 101.5 
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Table 2. Mean DBPS, cm (top row in each cell) and interquartile range, cm (bottom row in 

each cell). Summer = JJA, Autumn = SON, Winter = DJF, Spring = MAM. *2015/16 does 

not include data from 29 January onwards. 
Season Sum

mer 

Autu

mn 

Winte

r 

Spri

ng 

Sum

mer 

Autu

mn 

Winte

r 

Spri

ng 

Sum

mer 

Autu

mn 
Winter 

2013 2013 
2013/

14 
2014 2014 2014 

2014/

15 
2015 2015 2015 

2015/1

6* 

Precipitation, 

cm 110.8 251.4 460.6 

268.

3 250.0 209.8 298.4 

174.

6 143.0 153.0 180.4 

Pool 

evaporation, 

cm 248.2 57.8 2.0 75.1 293.8 61.6 1.7 57.6 195.8 54.2 0.9 

Pool 1 27.3 23.2 17.5 18.2 19.6 16.7 14.9 15.4 16.0 14.6 11.9 

6.7 8.0 0.5 1.2 4.3 2.5 0.9 1.0 1.6 1.9 0.6 

Pool 2 29.2 24.3 18.0 19.0 21.7 18.3 16.8 17.7 19.5 18.4 15.9 

8.2 10.8 0.4 1.6 5.5 2.0 0.4 1.4 3.0 2.7 0.4 

Pool 3 28.2 22.3 18.5 19.3 21.0 18.1 16.5 17.3 18.2 17.1 15.2 

6.5 4.1 0.6 1.4 4.2 2.3 0.6 1.6 2.3 2.5 0.4 

Pool 4 26.2 20.9 15.4 16.2 18.8 15.5 13.4 14.3 15.3 14.2 11.8 

7.1 7.2 0.5 1.5 5.4 3.3 0.7 2.0 2.4 2.4 0.6 

Pool 5 19.2 12.6 9.8 10.3 12.1 9.4 7.5 7.9 8.7 7.7 5.9 

5.6 3.6 0.6 1.6 4.9 2.8 0.9 1.6 2.3 2.2 0.3 

Pool 6 24.9 18.4 15.2 16.1 18.0 15.1 13.4 14.3 15.3 14.3 13.0 

6.7 4.1 0.5 1.7 5.2 2.8 0.6 1.3 2.1 1.5 0.3 

All natural 

pools 
25.8 20.3 15.7 16.5 18.5 15.5 13.7 14.5 15.5 14.4 12.3 

6.8 6.4 0.5 1.5 4.9 2.6 0.6 1.4 2.3 2.2 0.4 

Pool 7 19.8 13.0 11.0 11.3 12.3 10.2 9.1 10.2 10.7 10.2 8.4 

9.3 1.8 0.6 1.8 3.9 2.1 1.2 2.3 2.2 1.8 0.7 

Pool 8 18.1 9.5 7.6 9.0 9.9 7.7 5.9 7.4 8.8 7.2 5.3 

10.2 2.2 1.0 2.3 3.9 3.2 1.4 2.6 2.9 2.4 1.4 

Pool 9 23.6 16.7 14.3 15.2 16.1 14.4 12.8 13.8 14.8 14.1 12.0 

8.3 2.7 0.9 2.3 3.6 2.8 1.1 1.9 2.1 2.9 1.0 

Pool 10 21.9 12.4 9.4 10.6 12.6 10.1 8.1 9.4 10.5 9.6 7.2 

9.5 3.1 1.2 2.1 6.4 3.1 1.4 2.0 3.3 3.1 1.3 

Pool 11 29.2 20.0 17.0 18.3 20.2 17.5 15.0 16.8 19.0 17.8 14.7 

7.7 3.3 1.5 2.6 6.3 3.6 2.1 2.7 3.9 4.0 1.9 

Pool 12 25.9 16.0 12.7 14.4 16.4 13.0 10.3 11.7 13.7 12.7 9.2 

9.6 3.6 2.0 4.1 8.0 4.9 0.9 3.1 6.1 5.0 0.8 

All artificial 

pools 
23.1 14.6 12.0 13.2 14.6 12.2 10.2 11.5 12.9 11.9 9.5 

9.1 2.7 1.1 2.5 5.4 3.3 1.4 2.2 3.3 3.1 1.1 
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Table 3. Rates of pool outflow and recharge 

 

 Pool outflow, m3 yr-1 Number of times the 

equivalent pool volume was 

recharged, yr-1 

Pool 1 818.4 1.9 

Pool 2 1047.8 64.4 

Pool 3 1079.0 402.3 

Pool 4 201.7 4.1 

Pool 5 32.4 7.1 

Pool 6 82.4 11.4 

Natural median 510.0 9.2 

Pool 7 37.7 19.2 

Pool 8 59.2 69.7 

Pool 9 47.2 22.2 

Pool 10 980.4 714.3 

Pool 11 17.1 38.5 

Pool 12 158.4 194.2 

Artificial median 53.2 54.1 
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Table 4. Mean pool water level responses to 20 storm events 

 

 

Pool level 

change 
(cm) 

Smallest 

DBPS in storm 
(cm) 

Time from 

rain start to 

smallest DBPS 
(h) 

Increase in 

DBPS6 hrs 

after smallest 

depth (cm h-1) 

Increase in 

DBPS12 hrs 

after smallest 

depth (cm h-1) 
Pool 1 2.2 15.5 19.5 0.10 0.08 
Pool 2 1.7 17.7 18.4 0.05 0.04 
Pool 3 2.0 17.1 17.6 0.08 0.06 
Pool 4 1.9 14.5 19.3 0.07 0.04 
Pool 5 1.9 8.1 14.2 0.09 0.06 
Pool 6 2.0 14.1 16.5 0.09 0.05 
Natural mean 1.9 14.5 17.6 0.08 0.06 
Pool 7 2.4 8.7 14.2 0.16 0.10 
Pool 8 3.5 4.9 11.8 0.27 0.16 
Pool 9 3.0 11.8 12.4 0.23 0.14 
Pool 10 3.2 7.3 16.9 0.12 0.09 
Pool 11 5.1 13.2 16.9 0.22 0.19 
Pool 12 4.4 9.2 15.3 0.20 0.16 
Artificial 

mean 3.6 9.2 14.6 0.20 0.14 
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Table 5. Water level in the pools and surrounding peat, m, relative to a local datum for 21st 

May 2015 to 28th January 2016. Note that one datum point was used for the natural pool site 

and a different datum point was used for the artificial pool site.  

 
Pool/Dipwell  Mean Std deviation IQR Minimum Maximum Range 
Pool 1 99.729 0.019 0.038 99.693 99.781 0.088 
Pool 2 99.689 0.020 0.036 99.643 99.723 0.081 
Pool 3 99.574 0.017 0.023 99.534 99.605 0.072 
Pool 4 98.682 0.018 0.034 98.639 98.716 0.077 
Pool 5 98.327 0.015 0.027 98.290 98.363 0.073 
Pool 6 98.216 0.013 0.021 98.180 98.243 0.063 
Dipwell P1U 99.800 0.014 0.020 99.758 99.833 0.074 
Dipwell P1M 99.724 0.023 0.036 99.662 99.770 0.109 
Dipwell P1D 99.621 0.051 0.080 99.474 99.686 0.212 
Dipwell P4U 98.741 0.024 0.033 98.657 98.778 0.122 
Dipwell P4M 98.457 0.021 0.033 98.391 98.501 0.110 
Dipwell P4D 98.380 0.028 0.047 98.316 98.449 0.133 
Pool 7 99.570 0.016 0.021 99.517 99.608 0.091 
Pool 8 100.215 0.021 0.034 100.159 100.265 0.106 
Pool 9 100.969 0.018 0.029 100.929 101.017 0.088 
Pool 10 97.8618 0.022 0.032 97.796 97.927 0.130 
Pool 11 101.400 0.029 0.042 101.320 101.484 0.154 
Pool 12 99.886 0.033 0.049 99.809 99.964 0.155 
Dipwell P8U 100.449 0.045 0.041 100.300 100.522 0.222 
Dipwell P8D 100.104 0.027 0.026 99.992 100.142 0.150 
Dipwell P11U 101.641 0.032 0.040 101.556 101.759 0.203 
Dipwell P11D 101.311 0.025 0.036 101.230 101.372 0.142 
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Figure 1. Location of the 12 study pools, natural pools are shown in red and artificial pools in 

green. Also shown are 2m contours and the area of felled forest. The location within the UK 

is shown in the inset map. Imagery used with permission from Esri, image taken 2016.  
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Figure 2. Time-series of pool levels, DBPS, 15-minute interval data, and daily rainfall. 
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Figure 3. Manually measured water-table depths in the peat 1 m from natural pools (black) 

and artificial pools (grey). The box shows the interquartile range, error bars show range, 

crosses show 1st and 99th percentiles, solid square box shows mean and the horizontal 

dashed line shows the median.  
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Figure 4. Comparisons of relative pool water level and water-table height in the peat nearby 

for Pools 1, 4, 8 and 11, based on automated records. The box shows the interquartile range, 

error bars show range, crosses show 1st and 99th percentiles, solid square box shows mean 

and the grey line shows median. U = upslope of pool, M = adjacent to pool, D = downslope 

from pool. 
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Figure 5. Examples of pool level and water-table time-series from Pool 4 in the natural pool 

system (upper panel) and Pool 8 in the artificial pool system (lower panel). Water levels 

shown in each plot are all relative to the same local datum; one datum was used for the 

natural pool site while a different datum was used at the artificial pool site. 
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