45 research outputs found

    Atmosphere-soil-stream greenhouse gas fluxes from peatlands

    Get PDF
    The project aims to produce a complete inventory of greenhouse gas fluxes and emissions from a Scottish peatland. Carbon dioxide, methane and nitrous oxide emissions from the land surface (soil and vegetation) to the atmosphere, losses to streamwater and degassing will all be considered. The study is carried out at Auchencorth Moss, Midlothian, with intensive monitoring and measurements being made over a 2-year period, starting March 2006. The site consists of a patchwork of different vegetation communities including areas dominated by Calluna or Juncus, grassy hummocks and hollows and a narrow riparian zone again dominated by Juncus. GHG flux measurements will be made using chambers covering each vegetation type allowing for both a comparison between vegetation types and the subsequent scaling up to catchment level emissions. A flux tower on site provides further data on CO2 net exchange. In addition the concentrations of GHG in the soil are measured using gas permeable tubing. Other land based measurements will include water table depth, soil moisture, soil temperature and soil NO3, NH4 and DOC content. A datalogger is in place adjacent to the stream allowing for almost continuous measurements of stream temperature, conductivity and height; this data along with regular measurements of stream solute and dissolved gas concentrations will be used to estimate both stream gaseous emissions and lateral outputs. Routine measurements of carbon (DOC, DIC, POC, CO2 and CH4) and nitrogen (NO3, NH4, DON, N2O) will also be made along the stream length to measure spatial variability

    Atmosphere-soil-stream greenhouse gas fluxes from peatlands

    Get PDF
    Peatlands cover approximately 2-3% of the world’s land area yet represent approximately a third of the worlds estimated total soil carbon pool. They therefore play an important role in regulating global atmospheric CO2 and CH4 concentrations, and even minor changes in their ability to store carbon could potentially have significant effects on global climate change. Much previous research has focussed primarily on land-atmosphere fluxes. Where aquatic fluxes have been considered, they are often in isolation from the rest of the catchment and usually focus on downstream losses, ignoring evasion (degassing) from the water surface. However, as peatland streams have been repeatedly shown to be highly supersaturated in both CO2 and CH4 with respect to the atmosphere, they potentially represent an important pathway for catchment GHG losses. This study aimed to a) create a complete GHG and carbon budget for Auchencorth Moss catchment, Scotland, linking both terrestrial and aquatic fluxes, and b) understand what controls and drives individual fluxes within this budget. This understanding was further developed by a short study of C exchange at the peat-aquatic interface at Mer Bleue peatland, Canada. Significant variability in soil-atmosphere fluxes of both CH4 and N2O emissions was evident at Auchencorth Moss; coefficients of variation across 21 field chambers were 300% and 410% for CH4 and N2O, respectively. Both in situ chamber measurements and a separate mesocosm study illustrated the importance of vegetation in controlling CH4 emissions. In contrast to many previous studies, CH4 emissions were lower and uptake greater where aerenchymous vegetation was present. Water table depth was also an important driver of variability in CH4 emissions, although the effect was only evident during either periods of extreme drawdown or when the water table was consistently near or above the peat surface. Significant pulses in both CH4 and N2O emissions were observed in response to fluctuations in water table depth. Despite the variability in CH4 and N2O emissions and the uncertainty in up-scaled estimates, their contribution to the total GHG and carbon budgets was minor. Concentrations of dissolved CO2 in peatland drainage waters ranged from a mean of 2.88 ± 0.09 mg C L-1 in the Black Burn, Scotland, to a mean of 7.64 ± 0.80 mg C L-1 in water draining Mer Bleue, Canada. Using non-dispersive infra-red (NDIR) CO2 sensors with a 10-minute measurement frequency, significant temporal variability was observed in aquatic CO2 concentrations at the 2 contrasting field sites. However, the drivers of this variability differed significantly. At Mer Bleue, Canada, biological activity in the water column led to clear diurnal cycles, whereas in the Black Burn draining Auchencorth Moss, dilution due to discharge was the primary driver. The NDIR sensor data also showed differences in soil-stream connectivity both between the sites (connectivity was weak at Mer Bleue) and across the range of conditions measured at Auchencorth Moss i.e. connectivity increased during periods of stormflow. Compiling the results from both the terrestrial and aquatic systems at Auchencorth Moss indicated that the catchment was functioning as a net sink for GHGs (382 kg CO2-eq ha-1 yr-1) and a net source of carbon (143 kg C ha-1 yr-1). The greatest flux of GHGs was via net ecosystem exchange (NEE). Terrestrial emissions of CH4 and N2O combined returned only ~5% of CO2-equivalents captured by NEE to the atmosphere, whereas evasion of CO2, CH4 and N2O from the stream surface returned ~40%. The budgets clearly show the importance of aquatic fluxes at Auchencorth Moss and highlight the potential for significant error in source/sink strength calculations if they are omitted. Furthermore, the process based understanding of soil-stream connectivity suggests the aquatic flux pathway may play an increasingly important role in the source-sink function of peatlands under future management and climate change scenarios

    Source and age of carbon in peatland surface waters: new insights from 14C analysis

    Get PDF
    Peatlands are a significant source of carbon to the aquatic environment which is increasingly being recognised as an important flux pathway (both lateral and vertical) in total landscape carbon budgets. Determining the source and age of the carbon (in its various forms) is a key step to understanding the stability of peatland systems as well as the connectivity between the soil carbon pool and the freshwater environment. Novel analytical and sampling methods using molecular sieves have been developed for (1) within-stream, in situ sampling of CO2 in the field and (2) for the removal/separation of CO2 in the laboratory prior to 14C analysis of CH4. Here we present dual isotope (ή13C and 14C) data from freshwater systems in UK and Finnish peatlands to show that significant differences exist in the source and age of CO2, DOC (dissolved organic carbon) and POC (particulate organic carbon). Individual peatlands clearly differ in terms of their isotopic freshwater signature, suggesting that carbon cycling may be “tighter” in some systems compared to others. We have also measured the isotopic signature of different C species in peatland pipes, which appear to be able to tap carbon from different peat depths. This suggests that carbon cycling and transport within “piped-peatlands” may be more complex than previously thought. Some of our most recent work has focussed on the development of a method to measure the 14C component of CH4 in freshwaters. Initial results suggest that CH4 in peatland streams is significantly older than CO2 and derived from a much deeper source. We have also shown that the age (but not the source) of dissolved CO2 changes over the hydrological year in response to seasonal changes in discharge and temperature. Radiocarbon measurements in the peat-riparian-stream system suggest that a significant degree of connectivity exists in terms of C transport and cycling, although the degree of connectivity differs for individual C species. In summary, 14C analysis of peatland surface waters reveals multiple sources and ages for CO2, CH4, DOC and POC with different ages characterising individual peatlands. This implies that carbon transport from peat to stream is more complex than previously thought. Dual isotope (ή13C and 14C) analysis of carbon in its various aquatic forms is clearly a powerful tool in developing a better understanding of the functioning and stability of carbon-rich landscapes

    Temporal changes in photoreactivity of dissolved organic carbon and implications for aquatic carbon fluxes from peatlands

    Get PDF
    Aquatic systems draining peatland catchments receive a high loading of dissolved organic carbon (DOC) from the surrounding terrestrial environment. Whilst photo-processing is known to be an important process in the transformation of aquatic DOC, the drivers of temporal variability in this pathway are less well understood. In this study, 8 h laboratory irradiation experiments were conducted on water samples collected from two contrasting peatland aquatic systems in Scotland: a peatland stream and a reservoir in a catchment with high percentage peat cover. Samples were collected monthly at both sites from May 2014 to May 2015 and from the stream system during two rainfall events. DOC concentrations, absorbance properties and fluorescence characteristics were measured to investigate characteristics of the photochemically labile fraction of DOC. CO2 and CO produced by irradiation were also measured to determine gaseous photoproduction and intrinsic sample photoreactivity. Significant variation was seen in the photoreactivity of DOC between the two systems, with total irradiation-induced changes typically 2 orders of magnitude greater at the high-DOC stream site. This is attributed to longer water residence times in the reservoir rendering a higher proportion of the DOC recalcitrant to photo-processing. During the experimental irradiation, 7 % of DOC in the stream water samples was photochemically reactive and direct conversion to CO2 accounted for 46 % of the measured DOC loss. Rainfall events were identified as important in replenishing photoreactive material in the stream, with lignin phenol data indicating mobilisation of fresh DOC derived from woody vegetation in the upper catchment. This study shows that peatland catchments produce significant volumes of aromatic DOC and that photoreactivity of this DOC is greatest in headwater streams; however, an improved understanding of water residence times and DOC input–output along the source to sea aquatic pathway is required to determine the fate of peatland carbon

    Growing season CH4 and N2O fluxes from a subarctic landscape in northern Finland; from chamber to landscape scale

    Get PDF
    Subarctic and boreal emissions of CH4 are important contributors to the atmospheric greenhouse gas (GHG) balance and subsequently the global radiative forcing. Whilst N2O emissions may be lower, the much greater radiative forcing they produce justifies their inclusion in GHG studies. In addition to the quantification of flux magnitude, it is essential that we understand the drivers of emissions to be able to accurately predict climate-driven changes and potential feedback mechanisms. Hence this study aims to increase our understanding of what drives fluxes of CH4 and N2O in a subarctic forest/wetland landscape during peak summer conditions and into the shoulder season, exploring both spatial and temporal variability, and uses satellite-derived spectral data to extrapolate from chamber-scale fluxes to a 2 km  ×  2 km landscape area. From static chamber measurements made during summer and autumn campaigns in 2012 in the SodankylĂ€ region of northern Finland, we concluded that wetlands represent a significant source of CH4 (3.35 ± 0.44 mg C m−2 h−1 during the summer campaign and 0.62 ± 0.09 mg C m−2 h−1 during the autumn campaign), whilst the surrounding forests represent a small sink (−0.06 ± < 0.01 mg C m−2 h−1 during the summer campaign and −0.03 ± < 0.01 mg C m−2 h−1 during the autumn campaign). N2O fluxes were near-zero across both ecosystems. We found a weak negative relationship between CH4 emissions and water table depth in the wetland, with emissions decreasing as the water table approached and flooded the soil surface and a positive relationship between CH4 emissions and the presence of Sphagnum mosses. Temperature was also an important driver of CH4 with emissions increasing to a peak at approximately 12 °C. Little could be determined about the drivers of N2O emissions given the small magnitude of the fluxes. A multiple regression modelling approach was used to describe CH4 emissions based on spectral data from PLEIADES PA1 satellite imagery across a 2 km  ×  2 km landscape. When applied across the whole image domain we calculated a CH4 source of 2.05 ± 0.61 mg C m−2 h−1. This was significantly higher than landscape estimates based on either a simple mean or weighted by forest/wetland proportion (0.99 ± 0.16, 0.93 ± 0.12 mg C m−2 h−1, respectively). Hence we conclude that ignoring the detailed spatial variability in CH4 emissions within a landscape leads to a potentially significant underestimation of landscape-scale fluxes. Given the small magnitude of measured N2O fluxes a similar level of detailed upscaling was not needed; we conclude that N2O fluxes do not currently comprise an important component of the landscape-scale GHG budget at this site

    Effects of peatland management on aquatic carbon concentrations and fluxes

    Get PDF
    Direct land-to-atmosphere carbon exchange has been the primary focus in previous studies of peatland disturbance and subsequent restoration. However, loss of carbon via the fluvial pathway is a significant term in peatland carbon budgets and requires consideration to assess the overall impact of restoration measures. This study aimed to determine the effect of peatland land management regime on aquatic carbon concentrations and fluxes in an area within the UK's largest tract of blanket bog, the Flow Country of northern Scotland. Three sub-catchments were selected to represent peatland land management types: non-drained, drained, and restoration (achieved through drain blocking and tree removal). Water samples were collected on a fortnightly basis from September 2008 to August 2010 at six sampling sites, one located upstream and one downstream within each sub-catchment. Concentrations of dissolved organic carbon (DOC) were significantly lower for the upstream non-drained sub-catchment compared to the drained sub-catchments, and there was considerable variation in the speciation of aquatic carbon (DOC, particulate organic carbon (POC), CO2, and CH4) across the monitoring sites, with dissolved gas concentrations inversely correlated with catchment area and thereby contributing considerably more to total aquatic carbon in the smaller headwater catchments. Significantly higher POC concentrations were observed in the restored sub-catchment most affected by tree removal. Aquatic carbon fluxes were highest from the drained catchments and lowest from the non-drained catchments at 23.5 and 7.9 g C m−2 yr−1, respectively, with variability between the upstream and downstream sites within each catchment being very low. It is clear from both the aquatic carbon concentration and flux data that drainage has had a profound impact on the hydrological and biogeochemical functioning of the peatland. In the restoration catchment, carbon export varied considerably, from 21.1 g C m−2 yr−1 at the upper site to 10.0 g C m−2 yr−1 at the lower site, largely due to differences in runoff generation. As a result of this hydrological variability, it is difficult to make definitive conclusions about the impact of restoration on carbon fluxes, and further monitoring is needed to corroborate the longer-term effects

    The import and export of organic nitrogen species at a Scottish ombrotrophic peatland

    Get PDF
    Dissolved organic nitrogen (DON) contributes significantly to the overall nitrogen budget, but is not routinely measured in precipitation or stream water. In order to investigate the contribution of DON to the deposition and export of N, precipitation, stream and soil water samples were collected from an ombrotrophic peatland and analysed for DON over a 2-year period. In wet-only deposition DON contributed up to 10 % of the total dissolved nitrogen (TDN) and was the most dominant fraction in soil water (99 %) and stream water (75 %). NH4 + was the most dominate form of N in precipitation, with NO3 - contributing the least to precipitation, soil water and stream water. Precipitation and stream DON were qualitatively analysed by a two-dimensional gas chromatograph coupled to a nitrogen chemiluminescence detector (GC × GC-NCD) after trapping onto C18 solid phase extraction (SPE) cartridges. Ten unique compounds were detected and five identified as pyrrole, benzonitrile, dodecylamine, N-nitrosodipropylamine and decylamine. Five compounds were present in both precipitation and stream samples: pyrrole, benzonitrile and three unidentified compounds. The SPE-extraction efficiency for DON was very low (11 %), but with improvements DON speciation could become a valuable tool to provide information on its sources and pathways and inform chemical transport models

    Carbon concentrations in natural and restoration pools in blanket peatlands

    Get PDF
    Open-water perennial pools are common natural features of peatlands globally, and peatland restoration often results in new pool creation, yet the concentrations of different forms of aquatic carbon (C) in natural and artificial restoration pools are not well studied. We compared carbon concentrations in both natural pools and restoration pools (4–15 years old) on three blanket peatlands in northern Scotland. At all sites, restoration pools were more acidic and had mean dissolved organic carbon (DOC) concentrations in restoration pools of 23, 22, and 31 mg L−1 compared with natural pool means of 11, 11 and 15 mg L−1 respectively across the three sites. Restoration pools had a greater fulvic acid prevalence than the natural pools and their DOC was more aromatic. Restoration pools were supersaturated with dissolved CO2 at around 10 times atmospheric levels, whereas for natural pools, CO2 concentrations were just above atmospheric levels. Dissolved CH4 concentrations were not different between pool types, but were ~200 times higher than atmospheric levels. Regular sampling at one of the peatland sites over 2.5 years showed that particulate organic carbon (POC) concentrations were generally below 7 mg L−1 except during the warm, dry summer of 2013. At this regularly-sampled site, natural pools were found to process DOC so that mean pool outflow concentrations in overland flow were significantly lower than mean inflow DOC concentrations. Such an effect was not found for the restoration pools. Soil solution and pool water chemistry, and relationships between DOC and CO2 concentrations suggest that different processes are controlling the transformation of C, and therefore the form and amount of C, in natural pools compared to restoration pools

    Refining the role of phenology in regulating gross ecosystem productivity across European peatlands

    Get PDF
    Abstract The role of plant phenology as regulator for gross ecosystem productivity (GEP) in peatlands is empirically not well constrained. This is because proxies to track vegetation development with daily coverage at the ecosystem scale have only recently become available and the lack of such data has hampered the disentangling of biotic and abiotic effects. This study aimed at unraveling the mechanisms that regulate the seasonal variation in GEP across a network of eight European peatlands. Therefore, we described phenology with canopy greenness derived from digital repeat photography and disentangled the effects of radiation, temperature and phenology on GEP with commonality analysis and structural equation modeling. The resulting relational network could not only delineate direct effects but also accounted for possible effect combinations such as interdependencies (mediation) and interactions (moderation). We found that peatland GEP was controlled by the same mechanisms across all sites: phenology constituted a key predictor for the seasonal variation in GEP and further acted as distinct mediator for temperature and radiation effects on GEP. In particular, the effect of air temperature on GEP was fully mediated through phenology, implying that direct temperature effects representing the thermoregulation of photosynthesis were negligible. The tight coupling between temperature, phenology and GEP applied especially to high latitude and high altitude peatlands and during phenological transition phases. Our study highlights the importance of phenological effects when evaluating the future response of peatland GEP to climate change. Climate change will affect peatland GEP especially through changing temperature patterns during plant-phenologically sensitive phases in high latitude and high altitude regions.Peer reviewe
    corecore