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Abstract

The role of plant phenology as regulator for gross ecosystem productivity (GEP) in peatlands is 

empirically not well constrained. This is because proxies to track vegetation development with 

daily coverage at the ecosystem scale have only recently become available and the lack of such 

data has hampered the disentangling of biotic and abiotic effects. This study aimed at unraveling 

the mechanisms that regulate the seasonal variation in GEP across a network of eight European 

peatlands. Therefore, we described phenology with canopy greenness derived from digital repeat A
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photography and disentangled the effects of radiation, temperature and phenology on GEP with 

commonality analysis and structural equation modeling. The resulting relational network could not 

only delineate direct effects but also accounted for possible effect combinations such as 

interdependencies (mediation) and interactions (moderation). 

We found that peatland GEP was controlled by the same mechanisms across all sites: phenology 

constituted a key predictor for the seasonal variation in GEP and further acted as distinct mediator 

for temperature and radiation effects on GEP. In particular, the effect of air temperature on GEP 

was fully mediated through phenology, implying that direct temperature effects representing the 

thermoregulation of photosynthesis were negligible. The tight coupling between temperature, 

phenology and GEP applied especially to high latitude and high altitude peatlands and during 

phenological transition phases. Our study highlights the importance of phenological effects when 

evaluating the future response of peatland GEP to climate change.  Climate change will affect 

peatland GEP especially through changing temperature patterns during plant-phenologically 

sensitive phases in high latitude and high altitude regions. 

Key words: canopy greenness, mediation, moderation, structural equation modeling, commonality 

analysis, photosynthesis, peatland C cycle
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1 Introduction

Peatlands have accumulated approximately 400-600 Gt of carbon (C) since the beginning of the 

Holocene and thereby exerted a significant cooling effect (Köchy et al., 2015, Yu et al., 2011). 

The climate impact of peatlands results from a small but persistent net C sink that 

overcompensates for the impact of sustained methane emissions (Frolking et al., 2006, Frolking &  

Roulet, 2007). As anthropogenic global warming is projected to fuel peat mineralization rates 

(Dorrepaal et al., 2009), the natural climate cooling effect of peatlands is increasingly challenged. 

Though eventually, the future development of the peatland C sink will not only depend upon 

greenhouse gases emitted from peat mineralization, but also upon C sequesterested via gross 

ecosystem productivity (GEP) and its response to a changing environment (Lund et al., 2010, 

Oechel &  Billings, 1992). Thus, detailed knowledge of the mechanisms that regulate GEP 

dynamics in peatlands is imperative for better predictions of the biosphere feedback to the climate 

system. 

Phenology has recently received increasing attention as crucial driver for the peatland C cycle 

(Järveoja et al., 2018, Kross et al., 2014, Linkosalmi et al., 2016, Lund et al., 2010, Peichl et al., 

2015). Originally, phenology is defined as the timing of distinct life cycle events including the 

biotic and abiotic forces that regulate these recurrent dynamics (Lieth, 1975). However, with the 

demands of contemporary model efforts to better understand the biospheric C exchange, the 

concept of phenology has been expanded towards a continuous representation of plant 

physiological development over the course of the season (Mahadevan et al., 2008, Richardson et 

al., 2018a). In this sense, the role of plant phenology as regulator for the seasonal variation in 

peatland GEP is empirically not well constrained.

A mechanistic perspective on the peatland C cycle must not only incorporate the direct 

phenological effect on GEP but also account for potential dependencies and interactions between 

phenology and abiotic predictors. As phenology depends on the seasonal cycle of temperature and 

radiation (Russelle et al., 1984), it may transmit the year-to-year variation in weather on GEP 

(Hollinger et al., 2004, Niemand et al., 2005, Richardson et al., 2009). Further, phenology may 

modify the relationship between GEP and abiotic predictors. Such biotic-abiotic interactions can 

manifest, for instance, as a shifting light response function, the shape of which is modified by the 

availability of green biomass (Peichl et al., 2018, Wilson et al., 2007). A
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Although the linkages between biotic and abiotic predictors of GEP have been observed in 

different studies, the underlying relations have not been systematically compiled within a single 

statistical framework. Dependencies and interactions among predictor variables can be statistically 

described through so-called “third variable effects”, namely mediation and moderation (Fig. 1). 

These present relational concepts that allow the effect of a predictor on an outcome to be 

transmitted (mediated) or modified (moderated) through a third variable (Alwin &  Hauser, 1975, 

Baron &  Kenny, 1986). Such relational concepts are well established in social and psychological 

sciences (MacKinnon et al., 2007, Rucker et al., 2011) and may also be suited to better constrain 

the multi-faceted effects of phenology on peatland GEP. 

An independent phenological proxy is key for an explicit delineation of the abiotic and biotic 

effects regulating peatland GEP. Empirical approaches that describe phenology with temperature-

based proxies (Alm et al., 1997, Günther et al., 2017, Russelle et al., 1984) or CO2 exchange 

measurements (Gu et al., 2003, Kross et al., 2014, Lucas-Moffat et al., 2018, Raivonen et al., 

2015) may accurately reproduce phenological trajectories, but they cannot provide a mechanistic 

understanding of C cycling processes. Camera-based phenology metrics such as the green 

chromatic coordinate (GCC) measure the ‘canopy greenness’ derived from digital repeat 

photography that resolves visible changes in the RGB color spectrum over time (Richardson et al., 

2006, Tang et al., 2016). The image archive can track greenness changes resulting from the 

sprouting of new plants and leaf expansion during spring green-up as well as from pigmentation 

change and defoliation during senescence. With its daily coverage and ecosystem-scale scope, the 

GCC can describe the functional effect of seasonal vegetation dynamics as key regulator for 

terrestrial ecosystem processes (Peñuelas &  Filella, 2009, Richardson et al., 2012).

The goal of this study was to unravel the mechanisms that regulate the seasonal variations in 

peatland GEP, with a focus on exploring the role of phenology, described by canopygreenness, 

versus that of abiotic predictors. For this purpose, we made use of a unique digital image archive 

collected across a European peatland network that co-locates digital cameras for repeat 

photography with net ecosystem CO2 exchange measurements across a range of 20° latitude and 

1,300m altitude. The first objective was to systematically disentangle the effects of abiotic (air 

temperature and photosynthetically active radiation, PAR) and biotic (canopy greenness) 

predictors, thereby taking into account the potential dependencies and interactions among 

predictor variables. The second objective was to investigate whether the identified effects change A
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over time, i.e. to differentiate the mechanisms regulating GEP at the start, the peak and the end of 

the growing season. The third objective was to assess the ubiquity of the mechanisms regulating 

seasonal GEP across a wide range of peatland types located in different climate regions across 

Europe. 

2 Methods

2.1 Study sites

The peatland network includes eight European sites that span a range of 20° latitude and 1,300 m 

altitude across several climate regions (Fig. 2a, see also for site acronyms; Supplement S1). The 

contributing sites combine measurements of net ecosystem CO2 exchange (NEE) and phenological 

monitoring based on digital repeat photography. For this study, available measurements from 2014 

to 2016 were included and totaled 19 site years. 

The dominant vegetation form at all natural peatlands are graminoids (primarily Carex spp., 

Eriophorum vaginatum). In addition, most sites feature an extensive Sphagnum ground cover. A 

few isolated trees exist at FAJ, SII and SOD (Betula pubescens). LAV presents a former peat 

extraction area after recultivation with Reed Canary Grass (Phalaris arundinaceae) in 2007.

2.2 Measurements of net ecosystem CO2 exchange and auxiliary variables

Gross ecosystem productivity (GEP) is here defined as CO2 uptake originating from primary 

production and was derived from the difference between the measured NEE fluxes and ecosystem 

respiration (Reco). All contributing sites deployed the eddy covariance technique for NEE 

measurements except for LAV where the closed chamber approach was used (Supplement S2). 

For the eddy covariance data, gap filling and partitioning of the NEE into Reco and GEP was 

conducted with the widely used approach of Reichstein et al. (2005). Here, Reco is modeled with 

an exponential temperature response curve fitted to the nighttime NEE fluxes. For LAV, Reco was 

directly measured with opaque chambers (Järveoja et al., 2016). 

Radiation and temperature data are from standard meteorological sensors mounted adjacent to, 

either in the same mast or in the very close vicinity according to existing protocols or praxis in the 

eddy covariance community (Supplement S2). Short gaps in the half-hourly PAR and temperature 

data were filled with linear interpolation. Larger gaps were filled with data from equivalent 

instruments either co-located at the same site or from another nearby site. As not each of our A
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member sites could provide measurements describing water availability (i.e. soil moisture or water 

table level), we focused on radiationand temperature as major abiotic predictors. Hence, the 

variance proportion in GEP attributed to water supply could not be addressed in this study. 

For further analyses, we calculated daily sums for GEP and PAR (g CO2 m-2 d-1 and mol m-2 d-1) 

and daily averages for temperature (°C). All data handling was conducted in R version 3.4.3 (R 

Development Core Team, 2017). Time series of GEP and auxiliary variables are presented in 

supplement S3.

2.3 Digital Repeat Photography

Digital cameras were contained in water proof housing mounted at 2.0 to 3.8 m above the ground 

surface, viewing the top of the peatland canopy at shallow angles (i. e. ~15 deg). Camera azimuthal 

orientation was chosen to match the flux measurement footprint, and to minimize optical 

impairments caused by shadows and lens flare. At most sites, cameras were dismounted at the end 

of the growing season (November) and re-installed before the start of the following season (April-

May). Images were taken at half-hourly to bi-hourly intervals, thus providing sufficient data points 

to compensate for weather-related scene illumination effects (Sonnentag et al., 2012). Photos were 

saved in JPEG format. Hence, color information was converted in 8-bit red-green-blue (RGB) 

color code and expressed as digital numbers ranging from 0 to 255 for each color channel. 

2.4 Image Analysis

2.4.1 Selection of regions of interest and calculation of chromatic coordinates

For each site, a rectangular region of interest (ROI) was selected through visual inspection of the 

photos (Fig. 2b). The ROI was set to capture as much of the canopy as possible, while avoiding 

sky or other non-representative canopy elements (e.g., instrumentation huts). Smaller, permanent 

structures such as boardwalks were assumed to have minor impact and were therefore not 

excluded from the ROIs. 

We used the R package phenopix version 2.3.1 (Filippa et al., 2017, Filippa et al., 2016) to 

calculate ROI-averaged chromatic coordinates for the red, green and blue digital camera channels 

(RCC, GCC, BCC), respectively. Chromatic coordinates are derived from the ratio of the 

individual brightness levels to total brightness (i. e. the sum of the red, green and blue brightness 

levels) (Woebbecke et al., 1995). A
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2.4.2 Filtering and aggregation of the GCC time series

The suitability of the GCC as phenological proxy depends on the selection of appropriate scene 

illumination conditions. For this study, we developed an automatic GCC filtering algorithm that is 

versatile across a range of illumination conditions and reduces the need for site-specific manual 

processing. In addition, a slightly modified algorithm was established to detect periods of snow 

cover (see supplement S4 for a detailed explanation and application examples). 

In order to account for seasonal shifts in GEP predictors, we split the growing season into three 

phenophases:

- “green-up” defined as the period between the start of the season (SOS) and the start of the 

peak period (SOP),

- “peak” defined as the period between the start and end of the peak period (SOP and EOP),

- “senescence” defined as the period between EOP and the end of season (EOS).

SOS was defined as the date at which the smoothed GCC curve crossed 10% of the seasonal 

amplitude in spring (i.e. the GCC range spanned from the pre-season dormancy baseline to peak 

GCC). Analogously, EOS was defined at 10% of the seasonal range in the senescence period 

(from peak GCC to the post-season dormancy baseline). SOP and EOP were defined at 90% 

thresholds in the green-up and senescence period, respectively. 

2.5 Statistical analysis

We used a two-step approach to develop and test a mechanistic model for peatland GEP. The set 

of potential predictor variables comprised daily aggregates of air temperature, radiation 

(photosynthetically active radiation, PAR) and canopy greenness as well as possible moderation 

and mediation effects. 

In a first step, we deployed commonality analysis (CA) (Mood, 1969, Newton &  Spurrell, 1967) 

as exploratory approach to specify the type of effect exerted through a predictor (i.e., whether a 

predictor operates via main, moderation and/or mediation effects). In a second step, the effects 

specified with CA were composed as pathways within a relational network. The constructed 

relational network was then tested with structural equation modeling (SEM) (Haavelmo, 1943, 

Jöreskog, 1970, Wright, 1921) which was here used as confirmatory approach, i.e. to support or 

reject the relational structures composed by the previously specified effects. To address our first 

objective, we conducted the analysis for an overall model aggregating over all peatlands and the A
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entire season. For the second objective, we repeated the analysis with a multi-group SEM that 

accounts for possible shifts of relations over different phenophases. Finally, to address the third 

objective, we set up another multi-group SEM to assess the variation of the relational structures 

across climate regions. CA,SEM, and the method-specific effect definitions are described in detail 

in supplement S5.Results

2.6 Components of explained variance in peatland GEP

When aggregated over all site-years, the combination of plant phenology (i.e., GCC), radiation (i. 

e., PAR), air temperature, and their interdependencies explained 70 % of the variance in the 

seasonal patterns of peatland GEP. Moderation effects represented through interaction terms were 

negligible (<1 % of explained GEP in sum) and therefore omitted from further analysis. With 

respect to total effects, radiation and phenology were the best predictors, each alone contributing 

more than 58% of the explained variance in seasonal GEP (Fig. 3). Altogether, phenology and 

phenology-related higher-order effects accounted for two thirds of the explained variance in GEP. 

Hence, only one third of the explained variance in the seasonality of GEP was attributed 

exclusively to abiotic effects.

Further, the excess in the total effect sum (172 %) indicated substantial collinearity among 

predictors, which highlights the need to further specify total effects as 1st-order unique- and 

higher-order mediation effects. Phenology exerted the largest unique effect (effect size 29%) and 

therefore constituted the most important single predictor for GEP. Among abiotic predictors, 

radiation constituted the largest unique effect (effect size 14 %), whilst temperature alone had 

virtually no effect on GEP (effect size <1 %). In sum, unique main effects contributed only 43 % 

to explained GEP. Hence, most of the explained variance in seasonal GEP was attributed to 

second-and third-order effects, mostly phenology-related mediation effects, the latter of which 

summed up to 48% in explained variance. Meanwhile, 9% of the explained variance in GEP could 

not be separated between temperature and radiation and is here referred to as common abiotic 

effect. 

2.7 Model specification

Commonality analysis revealed substantial amounts of higher-order phenology-related effects. 

Hence, when relations for a mechanistic understanding of peatland CO2 uptake are delineated, 

such abiotic-biotic interdependencies must be described as phenology-mediated effects. Here, we A
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delineated the relations suggested by CA as regression paths and tested the constructed relational 

network with SEM. In line with the unique radiation effect revealed by CA (14 %), we established 

a regression path between radiation and GEP (path Rad→GEP in Fig. 4). At the same time, we 

omitted such a direct regression path between temperature and GEP, as unique temperature effects 

turned out to be negligible. With regard to the unique effect of phenology, we established a 

regression path between phenology and GEP (path PhenGEP). Further, with respect to the 

importance of phenology-related higher-order effects, phenology was also incorporated as 

outcome variable through regression paths delineated between temperature and phenology and 

radiation and phenology (paths TempPhen and RadPhen, respectively). Consequently, 

phenology was represented in a dual role as outcome and predictor variable and acted as mediator 

for temperature- and radiation effects on GEP. In the resulting model, radiation exerted its effect 

on GEP in two different ways: indirectly as predictor for phenological development and directly as 

predictor of the photochemical reaction rate. In contrast, temperature operated only indirectly 

through its effect on phenological development. As CA suggested a considerable degree of shared 

variance between temperature and radiation (9 %), we incorporated an undirected correlational-

relation between both abiotic predictors in our SEM (represented by the double-headed arrow 

Rad↔Temp). We omitted any moderation effects as CA revealed their effect sizes to be 

negligible. The final model was over-identified with one degree-of-freedom which complies with 

the mathematical requirement for SEMs to permit unique estimates for all parameter.

Two additional models with the same relational structure were set up for the group-wise fitting, 

i.e., to assess the delineated effects for different growing seasons and climate regions. These multi-

group-models were over-identified with 3 and 15 degrees-of-freedom, respectively.  

2.8 Model evaluation and predictors for peatland GEP

Fit indices of the developed SEM (CFI = 98% and SRMR= 0.025, see supplement S3) suggested 

the hypothesized relational network to present a proper approximation for the mechanisms 

underlying peatland GEP and the obtained parameter estimates to be valid for interpretation. All 

parameter estimates were significant at an α<0.001 level. However, due to the large sample size, 

we still tested for parsimony of our model to preclude single regression paths from being overrated 

(Sullivan et al. 2012). Therefore, we dropped the regression path with the lowest parameter 

coefficient and the highest relative standard error (RadPhen, 0.15, 12 %). The model rerun 

increased the Aikaike information criterion from 28,603 to 28,671. This comparison justified the A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

meaningfulness of the RadPhen regression path and further supported the entire relational 

network to provide the most parsimonious representation for peatland GEP. 

In the final model, phenology exerted the largest effect on the seasonal variation in peatland GEP 

(effect size ± standard error of the path PhenGEP: 0.59±0.02, Fig. 5), closely followed by 

radiation (RadGEP; 0.44±0.01). In turn, phenology was sensitive to temperature (TempPhen; 

0.38±0.02), whilst the effect of radiation on phenology was subordinate (RadPhen; 0.15±0.02). 

The temperature sensitivity of phenology resulted in a distinct indirect temperature effect 

(TempPhenGEP, i.e. the temperature effect mediated through phenology) of 0.23±0.02. In 

line with the subordinate role of radiation for the seasonal variation in phenology, the phenology-

mediated radiation effect was low with RadPhenGEP; 0.09±0.01.  

2.8.1 Seasonal shift in GEP predictors 

The estimated effect sizes differed distinctively among the three phenophases, thereby indicating a 

shift in GEP predictors over the course of the growing season (Fig. 6). During green-up, 

phenology was the dominant predictor for GEP with an effect size of 0.84±0.01. Radiation exerted 

a substantial direct effect of 0.30±0.01. Temperature affected GEP indirectly through its effect on 

plant growth (effect size 0.41). In addition, the model revealed a weak negative relation between 

phenology and radiation (-0.15±0.03). 

During the peak period (i.e. the period of phenological steady state), GEP was mostly controlled 

directly by day-to-day variation in radiation (effect size 0.76±0.03). Direct phenology effects on 

peatland GEP amounted for 0.10±0.03, though this applied primarily for north boreal sites where 

subtle changes in greenness occur even during the peak period.

The effect patterns during senescence resembled those of the green-up period: Phenology 

constituted the dominant predictor for GEP, however, this biotic effect (0.61±0.01) was less 

pronounced than in the green-up period. Again, radiation exerted a substantial direct effect on 

GEP (0.40±0.01). Phenological change in the senescence period was to the same amount related to 

diminishing temperature and radiation (effect sizes 0.47±0.02 and 0.41±0.02, respectively). 

2.8.2 Geographic variation in GEP predictors 

The observed effect patterns were apparent in peatlands across all climate regions, thereby 

supporting the ubiquity of the found relations. However, the differences in effect sizes indicate a 

varying sensitivity of GEP across the spatial extent of this study. Specifically, phenology effects A
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on GEP were highest during green-up in northern boreal and alpine peatlands (effect sizes 

0.93±0.01 and 0.93±0.03) and lowest in continental and southern boreal peatlands (0.68±0.06 and 

0.74±0.03). In turn, continental and southern boreal peatlands exhibited the highest radiation 

effects during green-up (0.48±0.076and 0.34±0.03), whilst radiation effects during green-up of 

northern boreal and alpine peatlands were lowest among all climate regions (0.26±0.01 and 

0.18±0.03). Radiation was the most dominant predictor of daily GEP in the phenological peak 

period across almost all climate regions, with highest effect sizes for north boreal and maritime 

peatlands (0.86±0.03 and 0.76±0.14). In addition to radiation, phenology exhibited a distinct effect 

on peak period GEP in north boreal sites (0.15±0.03). This indicates that subtle changes in plant 

activity variations during the short peak period of northern peatlands can substantially affect 

photosynthetic CO2 uptake. Effect patterns in the senescence period were relatively homogenous 

across climate regions with effect sizes ranging from 0.38 to 0.44 for radiation and 0.55 to 0.67 for 

phenology.

3 Discussion

Although the importance of seasonal plant development for the peatland C cycle is well 

recognized, previous studies have commonly identified abiotic variables such as radiation and 

temperature as key predictors for the seasonal variation of peatland C fluxes (Lindroth et al., 2007, 

Peichl et al., 2014).This is because proxies to track vegetation development with daily coverage 

have only recently become available and due to the statistical challenge in separating potential 

linkages among biotic and abiotic effects. In this study, we used canopy greenness trajectories 

derived from digital repeat photography as continuous phenological proxy and deployed CA and 

SEM as statistical approaches to set up and fit a mechanistic model of peatland GEP. The 

relational model network performed well in reproducing the seasonal variation in observed 

peatland GEP. Further, although confined to a small set of regression paths, the SEM yielded 

essentially the same predictive power as the indiscriminate composition of all possible predictor 

constellations used for CA. This suggests that the empirically based delineation of observed 

effects provides a parsimonious and realistic representation of GEP and can thereby promote our 

mechanistic understanding of the peatland C cycle.
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3.1 Predictors for peatland GEP

Our results support the importance of plant phenology as regulator of seasonal GEP dynamics in 

peatlands (Järveoja et al., 2018, Linkosalmi et al., 2016, Peichl et al., 2018, Peichl et al., 2015). 

Whilst these previous studies provided site-specific insights, here we demonstrate that the 

observed relations hold across a range of different peatlands in various climate regions. 

Furthermore, this study advances the mechanistic understanding of the peatland CO2 exchange by 

refining the role of phenology as mediator for abiotic predictors on GEP.

Distentangling abiotic and phenological effects on the C cycle is further recomplicated by 

phenology itself being depenend on abiotic variables. In our study, penology was most strongly 

related to the seasonal cycle in mean daily temperature. In other studies, phenological 

development is often associated with monthly aggregated air temperature (Chen &  Pan, 2002) or 

cumulative concepts such as heat sums (Wielgolaski, 1999). However, the scope of those studies 

has usually been on the prediction of distinct plant life cycle events, rather than on the transient 

seasonal change of phenological features. Here we observed substantial covariation between the 

seasonal change in canopy color and mean daily temperature. This covariation, in concert with the 

existing interrelation to GEP, demonstrates the tight coupling of the seasonal dynamics in 

temperature, phenology and peatland photosynthesis. Though, the results from our CA revealed 

neither a significant direct temperature effect, nor did temperature moderate the radiation effect on 

peatland GEP. Consequently, temperature exerted its effect on peatland GEP indirectly, i.e., 

through the regulation of phenological development. However, the thermoregulation of 

photosynthesis has been well constrained under controlled experimental conditions (Kumudini, 

2004, Monson et al., 1982, Sage &  Kubien, 2007). Thus, our study suggests, that at ecosystem 

scale and under in situ conditions, direct temperature effects are superimposed, e.g. through the 

distinct temperature-response of phenology and/or through stronger radiation effects.

The observed interdependency between temperature and phenology justifies the utilization of 

temperature-based phenology proxies when the study goal is purely predictive, e. g. for CO2 gap 

filling approaches and budgeting (Alm et al., 1997, Günther et al., 2017). Though, generic 

inferences about ecosystem CO2 exchange rely on a process-based understanding and therefore on 

an independent incorporation of phenology in mechanistic models. 
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3.1.1 Seasonal shift in GEP predictors 

Predictors of peatland GEP changed over the course of the growing season, thereby indicating a 

shift in the mechanisms regulating photosynthesis during different phenophases. During green-up, 

peatland GEP mostly relied on phenological development that was in turn related to rising spring 

air temperatures. Temperature and phenological development (e. g. represented through increases 

in leaf nitrogen and chlorophyll a concentration) are commonly known to be correlated with 

springtime  GEP in peatlands (Moore et al., 2002, Peichl et al., 2015). Though here, we can 

explicitly incorporate the causal sequence of spring temperature rise, commencing plant growth 

and concurrent CO2 assimilation in an empirical model. The fitted small negative radiation effect 

on springtime phenology most likely results from the specific shape of the seasonal photoperiodic 

curve that decreases after solstice, i.e., before the phenological peak has been reached. As 

radiation supply is typically not limiting photosynthesis during this time of the year, we do not 

interpret the fitted springtime radiation effect as causally determined. 

Phenology constituted the primary predictor for peatland GEP also during senescence, though at 

that time of the year, phenology was not only associated with decreasing temperatures but also 

with diminishing radiation. Both predictors have been found to trigger the plant-physiological 

processes that culminate in chlorophyll degradation and the cessation of photosynthesis in 

experimental studies (Causin et al., 2006, Rosenthal &  Camm, 1997). Though recent experiments 

revealed minor impact of diminishing autumn radiation as fixed-term regulator for plant 

senescence at the end of the season (Richardson et al., 2018b). Under the natural conditions of our 

study, diminishing autumn radiation exerted a dual effect on peatland GEP: it deprived the 

instantaneous photon flux supply for photosynthesis (conceptualized as direct effect) and, in 

concert with temperature, regulated the plant-physiological processes that initiate plant senescence 

(indirect, phenology-mediated effect on GEP). 

3.2 Geographic variation in GEP predictors 

The seasonal pattern in GEP predictors applied across all climate regions, indicating that the same 

mechanisms regulate peatland phenology and GEP in the northern hemisphere. Regardless, 

differences  in effect size across climate regions should be interpreted with care: Estimates at such 

a high level of of group-wise fitting, can be easily confounded by site-to-site differences in 

productivity, vegetation type and year-to-year variation in weather (Bubier et al., 1998, 

Linkosalmi et al., 2016). Phenology was the predominant control on GEP during the green-up A
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phase of all climate zones. Sensitivity of GEP to spring phenology was highest in north boreal and 

alpine peatlands, whereas green-up GEP of more southern and low-altitude peatlands was stronger 

related to radiation. These geographic differences in predictors for green-up GEP could reflect 

phenological adaptation mechanisms as they occur across different climate regions (Howe et al., 

2003, Vitasse et al., 2009). In alpine and northern climates, low winter temperatures can 

consistently suppress plant metabolic activity and induce a distinct phenological off-season. Plant 

growth in these regions responds rapidly to temperature rise in spring which results in a distinct 

green-up period with a relatively steep increase in spring GEP (Linkosalmi et al., 2016, Peichl et 

al., 2015). In comparison, more southern and low-altitude peatlands experience milder winters that 

allow mosses and some deciduous grass species to endure throughout the year. Without the need 

to renew leaf tissue at the start of the growing season, these plants can immediately start 

photosynthesis when radiation input increases in spring (Adkinson et al., 2011). 

Differences in predictors for peatland GEP during the senescence period were small and could not 

be attributed to climate regions. In general, the mechanisms regulating plant senescence and, as a 

result, autumn GEP are complex and their variation across climate regions is not well understood 

(Richardson et al., 2013). Similar effect patterns in the senescence period of our study sites 

indicate the same mechanisms to regulate peatland GEP across climate regions independent from 

the actual timing of senescence. A more detailed understanding about the mechanisms that control 

senescence of peatland plants and therefore autumn GEP across climate gradients requires 

concerted action that complements observational studies with experimental setups (Rosenthal &  

Camm, 1997, Vitasse et al., 2009, Wolkovich et al., 2012).

Radiation was the prominent control for peatland GEP in the phenological peak period which 

reflects the sensitivity of photosynthesis to weather-related variation in photon flux supply during 

a period of phenological steady-state. This is consistent with the findings of other studies that 

revealed temperature and to be the best abiotic predictors for peatland GEP during the peak 

season(Loisel et al., 2012, Peichl et al., 2015). Yet, the lack of consistent water availability 

measurements within our network limits our model to conditions when moisture is not limiting. 

The rise of continental networks that base on integrated measurement protocols is promising to 

standardize soil moisture monitoring within the community and to better represent this parameter 

in future synthesis studies. A
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3.3 Implications for the peatland C cycle

Future development of peatlands climate impact can be best evaluated through mechanistic models 

that incorporate abiotic as well as biotic predictors and the linkages among them. For this purpose, 

our study highlights the value of incorporating a continuous phenological proxy and the existing 

interdependencies to major abiotic predictors within a single model framework. In doing so, our 

study specified the key role of phenology as mediator for abiotic effects on peatland GEP. This 

finding has important implications for the future development of the peatland C cycle: Under 

projected global warming, the C sink function of peatlands will to a large extent depend upon the 

temperature response of vegetation. However, as suggested by the negligible direct temperature 

effect on GEP, substantial changes in peatland GEP might not occur in response to warming-

induced increase of CO2 assimilation rates. Instead, our findings suggest that the essential 

mechanism regulating peatland GEP under global warming is based on the associated 

enhancement of plant growth. These plant-mediated temperature effects on GEP were constrained 

to phenological transition phases, primarily the green-up and, to a lesser extent, the senescence 

phase. This observation agrees with other findings about enhanced GEP associated with an 

advanced green-up in response to warmer spring temperatures (Adkinson et al., 2011) and 

increased productivity associated with more Sphagnum growth in response to extended growing 

seasons (Loisel et al., 2012). Hence, predictions on peatland GEP in the light of global warminig 

must not only focus on shifts in annual average temperatures, but especially on changing 

temperature patterns during plant-phenologically sensitive phases. Whilst the regulation 

mechanisms identified in our study, emerged across the entire range of investigated climate 

regions, GEP in northern and alpine peatlands was most sensitive to changes in spring phenology. 

In correspondence with the temperature rise expected in these regions, our study suggests global 

warming to raise peatland GEP especially in these climates.

To summarize, our study highlights the importance of incorporating plant phenology in 

observational and model studies aiming for a mechanistic understanding of the peatland C cycle. 

Ultimately, such a process-based understanding is a prerequisite for better predictions of 

biological feedbacks to the climate system. 
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Example

• Temperature exerts a direct effect on
photosynthesis, the size of the
temperature effect changes over the
course of the phenological season

• Hence, phenology acts as a moderator to
modify the temperature effect on
photosynthesis

Moderation
• The strength of a predictor-outcome

relation is modified by a third variable

• Assumes independence among predictors

• Commonly incorporated in multiple
regression as multiplicative interaction
term

Mediation
• The effect of a predictor on an outcome is

transmitted through a third variable

• Assumes interrelation among predictors

• Interrelated controls are avoided in
common multiple regression settings as
collinearity confounds effect size estimates

Example

• Temperature exerts an indirect effect on
photosynthesis as it regulates plant
phenological development which in turn
regulates photosynthesis

• Hence, phenology acts as a mediator to
transmit the temperature effect on
photosynthesis
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