779 research outputs found
Constraints on a second planet in the WASP-3 system
There have been previous hints that the transiting planet WASP-3 b is
accompanied by a second planet in a nearby orbit, based on small deviations
from strict periodicity of the observed transits. Here we present 17 precise
radial velocity measurements and 32 transit light curves that were acquired
between 2009 and 2011. These data were used to refine the parameters of the
host star and transiting planet. This has resulted in reduced uncertainties for
the radii and masses of the star and planet. The radial-velocity data and the
transit times show no evidence for an additional planet in the system.
Therefore, we have determined the upper limit on the mass of any hypothetical
second planet, as a function of its orbital period.Comment: Accepted for publication in The Astronomical Journa
Transit timing variation in exoplanet WASP-3b
Photometric follow-ups of transiting exoplanets may lead to discoveries of
additional, less massive bodies in extrasolar systems. This is possible by
detecting and then analysing variations in transit timing of transiting
exoplanets. We present photometric observations gathered in 2009 and 2010 for
exoplanet WASP-3b during the dedicated transit-timing-variation campaign. The
observed transit timing cannot be explained by a constant period but by a
periodic variation in the observations minus calculations diagram. Simplified
models assuming the existence of a perturbing planet in the system and
reproducing the observed variations of timing residuals were identified by
three-body simulations. We found that the configuration with the hypothetical
second planet of the mass of about 15 Earth masses, located close to the outer
2:1 mean motion resonance is the most likely scenario reproducing observed
transit timing. We emphasize, however, that more observations are required to
constrain better the parameters of the hypothetical second planet in WASP-3
system. For final interpretation not only transit timing but also photometric
observations of the transit of the predicted second planet and the high
precision radial-velocity data are needed.Comment: MNRAS accepte
YETI observations of the young transiting planet candidate CVSO 30 b
CVSO 30 is a unique young low-mass system, because, for the first time, a
close-in transiting and a wide directly imaged planet candidates are found
around a common host star. The inner companion, CVSO 30 b, is the first
possible young transiting planet orbiting a previously known weak-lined T-Tauri
star. With five telescopes of the 'Young Exoplanet Transit Initiative' (YETI)
located in Asia, Europe and South America we monitored CVSO 30 over three years
in a total of 144 nights and detected 33 fading events. In two more seasons we
carried out follow-up observations with three telescopes. We can confirm that
there is a change in the shape of the fading event between different
observations and that the fading event even disappears and reappears. A total
of 38 fading event light curves were simultaneously modelled. We derived the
planetary, stellar, and geometrical properties of the system and found them
slightly smaller but in agreement with the values from the discovery paper. The
period of the fading event was found to be 1.36 s shorter and 100 times more
precise than the previous published value. If CVSO 30 b would be a giant planet
on a precessing orbit, which we cannot confirm, yet, the precession period may
be shorter than previously thought. But if confirmed as a planet it would be
the youngest transiting planet ever detected and will provide important
constraints on planet formation and migration time-scales.Comment: 14 pages (20 with appendix), 7 figures (16 with appendix), 6 tables
(7 with appendix
A stitch in time: Efficient computation of genomic DNA melting bubbles
Background: It is of biological interest to make genome-wide predictions of
the locations of DNA melting bubbles using statistical mechanics models.
Computationally, this poses the challenge that a generic search through all
combinations of bubble starts and ends is quadratic.
Results: An efficient algorithm is described, which shows that the time
complexity of the task is O(NlogN) rather than quadratic. The algorithm
exploits that bubble lengths may be limited, but without a prior assumption of
a maximal bubble length. No approximations, such as windowing, have been
introduced to reduce the time complexity. More than just finding the bubbles,
the algorithm produces a stitch profile, which is a probabilistic graphical
model of bubbles and helical regions. The algorithm applies a probability peak
finding method based on a hierarchical analysis of the energy barriers in the
Poland-Scheraga model.
Conclusions: Exact and fast computation of genomic stitch profiles is thus
feasible. Sequences of several megabases have been computed, only limited by
computer memory. Possible applications are the genome-wide comparisons of
bubbles with promotors, TSS, viral integration sites, and other melting-related
regions.Comment: 16 pages, 10 figure
A Possible Detection of Occultation by a Proto-planetary Clump in GM Cephei
GM Cep in the young (~4 Myr) open cluster Trumpler 37 has been known to be an
abrupt variable and to have a circumstellar disk with very active accretion.
Our monitoring observations in 2009-2011 revealed the star to show sporadic
flare events, each with brightening of < 0.5 mag lasting for days. These
brightening events, associated with a color change toward the blue, should
originate from an increased accretion activity. Moreover, the star also
underwent a brightness drop of ~1 mag lasting for about a month, during which
the star became bluer when fainter. Such brightness drops seem to have a
recurrence time scale of a year, as evidenced in our data and the photometric
behavior of GM Cep over a century. Between consecutive drops, the star
brightened gradually by about 1 mag and became blue at peak luminosity. We
propose that the drop is caused by obscuration of the central star by an
orbiting dust concentration. The UX Orionis type of activity in GM Cep
therefore exemplifies the disk inhomogeneity process in transition between
grain coagulation and planetesimal formation in a young circumstellar disk.Comment: In submission to the Astrophysical Journal, 4 figure
Multi-site campaign for transit timing variations of WASP-12 b: possible detection of a long-period signal of planetary origin
The transiting planet WASP-12 b was identified as a potential target for
transit timing studies because a departure from a linear ephemeris was reported
in the literature. Such deviations could be caused by an additional planet in
the system. We attempt to confirm the existence of claimed variations in
transit timing and interpret its origin. We organised a multi-site campaign to
observe transits by WASP-12 b in three observing seasons, using 0.5-2.6-metre
telescopes. We obtained 61 transit light curves, many of them with
sub-millimagnitude precision. The simultaneous analysis of the best-quality
datasets allowed us to obtain refined system parameters, which agree with
values reported in previous studies. The residuals versus a linear ephemeris
reveal a possible periodic signal that may be approximated by a sinusoid with
an amplitude of 0.00068+/-0.00013 d and period of 500+/-20 orbital periods of
WASP-12 b. The joint analysis of timing data and published radial velocity
measurements results in a two-planet model which better explains observations
than single-planet scenarios. We hypothesize that WASP-12 b might be not the
only planet in the system and there might be the additional 0.1 M_Jup body on a
3.6-d eccentric orbit. A dynamical analysis indicates that the proposed
two-planet system is stable over long timescales.Comment: Accepted for publication in A&
Anti-HIV-1 activity of cellulose acetate phthalate: Synergy with soluble CD4 and induction of "dead-end" gp41 six-helix bundles
BACKGROUND: Cellulose acetate phthalate (CAP), a promising candidate microbicide for prevention of sexual transmission of the human immunodeficiency virus type 1 (HIV-1) and other sexually transmitted disease (STD) pathogens, was shown to inactivate HIV-1 and to block the coreceptor binding site on the virus envelope glycoprotein gp120. It did not interfere with virus binding to CD4. Since CD4 is the primary cellular receptor for HIV-1, it was of interest to study CAP binding to HIV-1 complexes with soluble CD4 (sCD4) and its consequences, including changes in the conformation of the envelope glycoprotein gp41 within virus particles. METHODS: Enzyme-linked immunosorbent assays (ELISA) were used to study CAP binding to HIV-1-sCD4 complexes and to detect gp41 six-helix bundles accessible on virus particles using antibodies specific for the α-helical core domain of gp41. RESULTS: 1) Pretreatment of HIV-1 with sCD4 augments subsequent binding of CAP; 2) there is synergism between CAP and sCD4 for inhibition of HIV-1 infection; 3) treatment of HIV-1 with CAP induced the formation of gp41 six-helix bundles. CONCLUSIONS: CAP and sCD4 bind to distinct sites on HIV-1 IIIB and BaL virions and their simultaneous binding has profound effects on virus structure and infectivity. The formation of gp41 six-helical bundles, induced by CAP, is known to render the virus incompetent for fusion with target cells thus preventing infection
Maturation-Induced Cloaking of Neutralization Epitopes on HIV-1 Particles
To become infectious, HIV-1 particles undergo a maturation process involving proteolytic cleavage of the Gag and Gag-Pol polyproteins. Immature particles contain a highly stable spherical Gag lattice and are impaired for fusion with target cells. The fusion impairment is relieved by truncation of the gp41 cytoplasmic tail (CT), indicating that an interaction between the immature viral core and gp41 within the particle represses HIV-1 fusion by an unknown mechanism. We hypothesized that the conformation of Env on the viral surface is regulated allosterically by interactions with the HIV-1 core during particle maturation. To test this, we quantified the binding of a panel of monoclonal antibodies to mature and immature HIV-1 particles by immunofluorescence imaging. Surprisingly, immature particles exhibited markedly enhanced binding of several gp41-specific antibodies, including two that recognize the membrane proximal external region (MPER) and neutralize diverse HIV-1 strains. Several of the differences in epitope exposure on mature and immature particles were abolished by truncation of the gp41 CT, thus linking the immature HIV-1 fusion defect with altered Env conformation. Our results suggest that perturbation of fusion-dependent Env conformational changes contributes to the impaired fusion of immature particles. Masking of neutralization-sensitive epitopes during particle maturation may contribute to HIV-1 immune evasion and has practical implications for vaccine strategies targeting the gp41 MPER
Measurement of the t(t)over-bar production cross section in the dilepton channel in pp collisions at √s=8 TeV
The top-antitop quark (t (t) over bar) production cross section is measured in proton-proton collisions at root s = 8 TeV with the CMS experiment at the LHC, using a data sample corresponding to an integrated luminosity of 5.3 fb(-1). The measurement is performed by analysing events with a pair of electrons or muons, or one electron and one muon, and at least two jets, one of which is identified as originating from hadronisation of a bottom quark. The measured cross section is 239 +/- 2 (stat.) +/- 11 (syst.) +/- 6 (lum.) pb, for an assumed top-quark mass of 172.5 GeV, in agreement with the prediction of the standard model
- …