226 research outputs found

    Huge carotid body paraganglioma

    Get PDF
    A 33-year-old woman was admitted to our hospital with a slow-growing mass in the left side of her neck. The mass was found to be a huge (73 × 56 × 54 mm) carotid body paraganglioma. Another 21 mm-size tumor was incidentally detected at the right carotid bifurcation. She had hoarseness and Horner's syndrome of her left side. Both tumors were surgically removed. There were no cerebrovascular complications but some neurologic complications occurred when the left tumor was removed

    Thromboembolic Disease in Patients With Cancer and COVID-19: Risk Factors, Prevention and Practical Thromboprophylaxis Recommendations-State-of-the-Art.

    Get PDF
    Cancer and COVID-19 are both well-established risk factors predisposing to thrombosis. Both disease entities are correlated with increased incidence of venous thrombotic events through multifaceted pathogenic mechanisms involving the interaction of cancer cells or SARS-CoV2 on the one hand and the coagulation system and endothelial cells on the other hand. Thromboprophylaxis is recommended for hospitalized patients with active cancer and high-risk outpatients with cancer receiving anticancer treatment. Universal thromboprophylaxis with a high prophylactic dose of low molecular weight heparins (LMWH) or therapeutic dose in select patients, is currentlyindicated for hospitalized patients with COVID-19. Also, prophylactic anticoagulation is recommended for outpatients with COVID-19 at high risk for thrombosis or disease worsening. However, whether there is an additive risk of thrombosis when a patient with cancer is infected with SARS-CoV2 remains unclear In the current review, we summarize and critically discuss the literature regarding the epidemiology of thrombotic events in patients with cancer and concomitant COVID-19, the thrombotic risk assessment, and the recommendations on thromboprophylaxis for this subgroup of patients. Current data do not support an additive thrombotic risk for patients with cancer and COVID-19. Of note, patients with cancer have less access to intensive care unit care, a setting associated with high thrombotic risk. Based on current evidence, patients with cancer and COVID-19 should be assessed with well-established risk assessment models for medically ill patients and receive thromboprophylaxis, preferentially with LMWH, according to existing recommendations. Prospective trials on well-characterized populations do not exist

    Practical Recommendations for Optimal Thromboprophylaxis in Patients with COVID-19:A Consensus Statement Based on Available Clinical Trials

    Get PDF
    Coronavirus disease 2019 (COVID-19) has been shown to be strongly associated with increased risk for venous thromboembolism events (VTE) mainly in the inpatient but also in the outpatient setting. Pharmacologic thromboprophylaxis has been shown to offer significant benefits in terms of reducing not only VTE events but also mortality, especially in acutely ill patients with COVID-19. Although the main source of evidence is derived from observational studies with several limitations, thromboprophylaxis is currently recommended for all hospitalized patients with acceptable bleeding risk by all national and international guidelines. Recently, high quality data from randomized controlled trials (RCTs) further support the role of thromboprophylaxis and provide insights into the optimal thromboprophylaxis strategy. The aim of this statement is to systematically review all the available evidence derived from RCTs regarding thromboprophylaxis strategies in patients with COVID-19 in different settings (either inpatient or outpatient) and provide evidence-based guidance to practical questions in everyday clinical practice. Clinical questions accompanied by practical recommendations are provided based on data derived from 20 RCTs that were identified and included in the present study. Overall, the main conclusions are: (i) thromboprophylaxis should be administered in all hospitalized patients with COVID-19, (ii) an optimal dose of inpatient thromboprophylaxis is dependent upon the severity of COVID-19, (iii) thromboprophylaxis should be administered on an individualized basis in post-discharge patients with COVID-19 with high thrombotic risk, and (iv) thromboprophylaxis should not be routinely administered in outpatients. Changes regarding the dominant SARS-CoV-2 variants, the wide immunization status (increasing rates of vaccination and reinfections), and the availability of antiviral therapies and monoclonal antibodies might affect the characteristics of patients with COVID-19; thus, future studies will inform us about the thrombotic risk and the optimal therapeutic strategies for these patients

    Urgent need to clarify the definition of chronic critical limb ischemia - a position paper from the European Society for Vascular Medicine

    Get PDF
    Chronic critical lower limb ischemia (CLI) has been defined as ischemia that endangers the leg. An attempt was made to give a precise definition of CLI, based on clinical and hemodynamic data (Second European Consensus). CLI may be easily defined from a clinical point of view as rest pain of the distal foot or gangrene or ulceration. It is probably useful to add leg ulcers of other origin which do not heal because of severe ischemia, and to consider the impact of frailty on adverse outcome. From a hemodynamic viewpoint there is no consensus and most of the existing classifications are not based upon evidence. We should thus propose a definition and then validate it in a prospective cohort in order to define the patients at major risk of amputation, and also to define the categories of patients whose prognosis is improved by revascularisation. From today\u27s available data, it seems clear that the patients with a systolic toe pressure (STP) below 30 mmHg must be revascularised whenever possible. However other patients with clinically suspected CLI and STP above 30 mmHg must be evaluated and treated in specialised vascular units and revascularisation has to be discussed on a case by case basis, taking into account other data such as the WiFi classification for ulcers.In conclusion, many useful but at times contradictory definitions of CLI have been suggested. Only a few have taken into account evidence, and none have been validated prospectively. This paper aims to address this and to give notice that a CLI registry within Europe will be set up to prospectively validate, or not, the previous and suggested definitions of CLI

    Contrast-Enhanced MR Imaging of Lymph Nodes in Cancer Patients

    Get PDF
    The accurate identification and characterization of lymph nodes by modern imaging modalities has important therapeutic and prognostic significance for patients with newly diagnosed cancers. The presence of nodal metastases limits the therapeutic options, and it generally indicates a worse prognosis for the patients with nodal metastases. Yet anatomic imaging (CT and MR imaging) is of limited value for depicting small metastatic deposits in normal-sized nodes, and nodal size is a poor criterion when there is no extracapsular extension or focal nodal necrosis to rely on for diagnosing nodal metastases. Thus, there is a need for functional methods that can be reliably used to identify small metastases. Contrast-enhanced MR imaging of lymph nodes is a non-invasive method for the analysis of the lymphatic system after the interstitial or intravenous administration of contrast media. Moreover, some lymphotrophic contrast media have been developed and used for detecting lymph node metastases, and this detection is independent of the nodal size. This article will review the basic principles, the imaging protocols, the interpretation and the accuracies of contrast-enhanced MR imaging of lymph nodes in patients with malignancies, and we also focus on the recent issues cited in the literature. In addition, we discuss the results of several pre-clinical studies and animal studies that were conducted in our institution

    Systematic Review of Magnetic Resonance Lymphangiography From a Technical Perspective

    Get PDF
    Background Clinical examination and lymphoscintigraphy are the current standard for investigating lymphatic function. Magnetic resonance imaging (MRI) facilitates three‐dimensional (3D), nonionizing imaging of the lymphatic vasculature, including functional assessments of lymphatic flow, and may improve diagnosis and treatment planning in disease states such as lymphedema. Purpose To summarize the role of MRI as a noninvasive technique to assess lymphatic drainage and highlight areas in need of further study. Study Type Systematic review. Population In October 2019, a systematic literature search (PubMed) was performed to identify articles on magnetic resonance lymphangiography (MRL). Field Strength/Sequence No field strength or sequence restrictions. Assessment Article quality assessment was conducted using a bespoke protocol, designed with heavy reliance on the National Institutes of Health quality assessment tool for case series studies and Downs and Blacks quality checklist for health care intervention studies. Statistical Tests The results of the original research articles are summarized. Results From 612 identified articles, 43 articles were included and their protocols and results summarized. Field strength was 1.5 or 3.0 T in all studies, with 25/43 (58%) employing 3.0 T imaging. Most commonly, imaging of the peripheries, upper and lower limbs including the pelvis (32/43, 74%), and the trunk (10/43, 23%) is performed, including two studies covering both regions. Imaging protocols were heterogenous; however, T2‐weighted and contrast‐enhanced T1‐weighted images are routinely acquired and demonstrate the lymphatic vasculature. Edema, vessel, quantity and morphology, and contrast uptake characteristics are commonly reported indicators of lymphatic dysfunction. Data Conclusion MRL is uniquely placed to yield large field of view, qualitative and quantitative, 3D imaging of the lymphatic vasculature. Despite study heterogeneity, consensus is emerging regarding MRL protocol design. MRL has the potential to dramatically improve understanding of the lymphatics and detect disease, but further optimization, and research into the influence of study protocol differences, is required before this is fully realized. Level of Evidence 2 Technical Efficacy Stage

    COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-up

    Get PDF
    Coronavirus disease 2019 (COVID-19), a viral respiratory illness caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), may predispose patients to thrombotic disease, both in the venous and arterial circulations, due to excessive inflammation, platelet activation, endothelial dysfunction, and stasis. In addition, many patients receiving antithrombotic therapy for thrombotic disease may develop COVID-19, which can have implications for choice, dosing, and laboratory monitoring of antithrombotic therapy. Moreover, during a time with much focus on COVID-19, it is critical to consider how to optimize the available technology to care for patients without COVID-19 who have thrombotic disease. Herein, we review the current understanding of the pathogenesis, epidemiology, management and outcomes of patients with COVID-19 who develop venous or arterial thrombosis, and of those with preexisting thrombotic disease who develop COVID-19, or those who need prevention or care for their thrombotic disease during the COVID-19 pandemic.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/155446/1/Bikdeli-2020-COVID-19 and Thrombotic or Thromb.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155446/3/DeepBluepermissions_agreement-CCBYandCCBY-NC_ORCID_Barnes.docxhttps://deepblue.lib.umich.edu/bitstream/2027.42/155446/4/license_rdf.rdfDescription of Bikdeli-2020-COVID-19 and Thrombotic or Thromb.pdf : ArticleDescription of DeepBluepermissions_agreement-CCBYandCCBY-NC_ORCID_Barnes.docx : Deep Blue sharing agreemen

    Practical Recommendations for Optimal Thromboprophylaxis in Patients with COVID-19: A Consensus Statement Based on Available Clinical Trials.

    Get PDF
    Coronavirus disease 2019 (COVID-19) has been shown to be strongly associated with increased risk for venous thromboembolism events (VTE) mainly in the inpatient but also in the outpatient setting. Pharmacologic thromboprophylaxis has been shown to offer significant benefits in terms of reducing not only VTE events but also mortality, especially in acutely ill patients with COVID-19. Although the main source of evidence is derived from observational studies with several limitations, thromboprophylaxis is currently recommended for all hospitalized patients with acceptable bleeding risk by all national and international guidelines. Recently, high quality data from randomized controlled trials (RCTs) further support the role of thromboprophylaxis and provide insights into the optimal thromboprophylaxis strategy. The aim of this statement is to systematically review all the available evidence derived from RCTs regarding thromboprophylaxis strategies in patients with COVID-19 in different settings (either inpatient or outpatient) and provide evidence-based guidance to practical questions in everyday clinical practice. Clinical questions accompanied by practical recommendations are provided based on data derived from 20 RCTs that were identified and included in the present study. Overall, the main conclusions are: (i) thromboprophylaxis should be administered in all hospitalized patients with COVID-19, (ii) an optimal dose of inpatient thromboprophylaxis is dependent upon the severity of COVID-19, (iii) thromboprophylaxis should be administered on an individualized basis in post-discharge patients with COVID-19 with high thrombotic risk, and (iv) thromboprophylaxis should not be routinely administered in outpatients. Changes regarding the dominant SARS-CoV-2 variants, the wide immunization status (increasing rates of vaccination and reinfections), and the availability of antiviral therapies and monoclonal antibodies might affect the characteristics of patients with COVID-19; thus, future studies will inform us about the thrombotic risk and the optimal therapeutic strategies for these patients
    corecore