597 research outputs found
Thermodynamic and transport properties of fluids and selected solids for cryogenic applications Summary report, 1 Dec. 1965 - 1 Nov. 1970
Summary data on thermodynamic and transport properties of fluids and solids for cryogenic application
Post-critical set and non existence of preserved meromorphic two-forms
We present a family of birational transformations in depending on
two, or three, parameters which does not, generically, preserve meromorphic
two-forms. With the introduction of the orbit of the critical set (vanishing
condition of the Jacobian), also called ``post-critical set'', we get some new
structures, some "non-analytic" two-form which reduce to meromorphic two-forms
for particular subvarieties in the parameter space. On these subvarieties, the
iterates of the critical set have a polynomial growth in the \emph{degrees of
the parameters}, while one has an exponential growth out of these subspaces.
The analysis of our birational transformation in is first carried out
using Diller-Favre criterion in order to find the complexity reduction of the
mapping. The integrable cases are found. The identification between the
complexity growth and the topological entropy is, one more time, verified. We
perform plots of the post-critical set, as well as calculations of Lyapunov
exponents for many orbits, confirming that generically no meromorphic two-form
can be preserved for this mapping. These birational transformations in ,
which, generically, do not preserve any meromorphic two-form, are extremely
similar to other birational transformations we previously studied, which do
preserve meromorphic two-forms. We note that these two sets of birational
transformations exhibit totally similar results as far as topological
complexity is concerned, but drastically different results as far as a more
``probabilistic'' approach of dynamical systems is concerned (Lyapunov
exponents). With these examples we see that the existence of a preserved
meromorphic two-form explains most of the (numerical) discrepancy between the
topological and probabilistic approach of dynamical systems.Comment: 34 pages, 7 figure
Green Currents for Meromorphic Maps of Compact K\"ahler Manifolds
We consider the dynamics of meromorphic maps of compact K\"ahler manifolds.
In this work, our goal is to locate the non-nef locus of invariant classes and
provide necessary and sufficient conditions for existence of Green currents in
codimension one.Comment: Statement of Theorem 1.5 is slightly improved. Proposition 5.2 and
Theorem 5.3 are adde
Algebraic entropy and the space of initial values for discrete dynamical systems
A method to calculate the algebraic entropy of a mapping which can be lifted
to an isomorphism of a suitable rational surfaces (the space of initial values)
are presented. It is shown that the degree of the th iterate of such a
mapping is given by its action on the Picard group of the space of initial
values. It is also shown that the degree of the th iterate of every
Painlev\'e equation in sakai's list is at most and therefore its
algebraic entropy is zero.Comment: 10 pages, pLatex fil
Local adsorption structure and bonding of porphine on Cu(111) before and after self-metalation
We have experimentally determined the lateral registry and geometric
structure of free-base porphine (2H-P) and copper-metalated porphine (Cu-P)
adsorbed on Cu(111), by means of energy-scanned photoelectron diffraction
(PhD), and compared the experimental results to density functional theory (DFT)
calculations that included van der Waals corrections within the
Tkatchenko-Scheffler approach. Both 2H-P and Cu-P adsorb with their center
above a surface bridge site. Consistency is obtained between the experimental
and DFT-predicted structural models, with a characteristic change in the
corrugation of the four N atoms of the molecule's macrocycle following
metalation. Interestingly, comparison with previously published data for cobalt
porphine adsorbed on the same surface evidences a distinct increase in the
average height of the N atoms above the surface through the series 2H-P, Cu-P,
cobalt porphine. Such an increase strikingly anti-correlates the DFT-predicted
adsorption strength, with 2H-P having the smallest adsorption height despite
the weakest calculated adsorption energy. In addition, our findings suggest
that for these macrocyclic compounds, substrate-to-molecule charge transfer and
adsorption strength may not be univocally correlated
A birational mapping with a strange attractor: Post critical set and covariant curves
We consider some two-dimensional birational transformations. One of them is a
birational deformation of the H\'enon map. For some of these birational
mappings, the post critical set (i.e. the iterates of the critical set) is
infinite and we show that this gives straightforwardly the algebraic covariant
curves of the transformation when they exist. These covariant curves are used
to build the preserved meromorphic two-form. One may have also an infinite post
critical set yielding a covariant curve which is not algebraic (transcendent).
For two of the birational mappings considered, the post critical set is not
infinite and we claim that there is no algebraic covariant curve and no
preserved meromorphic two-form. For these two mappings with non infinite post
critical sets, attracting sets occur and we show that they pass the usual tests
(Lyapunov exponents and the fractal dimension) for being strange attractors.
The strange attractor of one of these two mappings is unbounded.Comment: 26 pages, 11 figure
On the complexity of some birational transformations
Using three different approaches, we analyze the complexity of various
birational maps constructed from simple operations (inversions) on square
matrices of arbitrary size. The first approach consists in the study of the
images of lines, and relies mainly on univariate polynomial algebra, the second
approach is a singularity analysis, and the third method is more numerical,
using integer arithmetics. Each method has its own domain of application, but
they give corroborating results, and lead us to a conjecture on the complexity
of a class of maps constructed from matrix inversions
Normal subgroups in the Cremona group (long version)
Let k be an algebraically closed field. We show that the Cremona group of all
birational transformations of the projective plane P^2 over k is not a simple
group. The strategy makes use of hyperbolic geometry, geometric group theory,
and algebraic geometry to produce elements in the Cremona group that generate
non trivial normal subgroups.Comment: With an appendix by Yves de Cornulier. Numerous but minors
corrections were made, regarding proofs, references and terminology. This
long version contains detailled proofs of several technical lemmas about
hyperbolic space
- …