Using three different approaches, we analyze the complexity of various
birational maps constructed from simple operations (inversions) on square
matrices of arbitrary size. The first approach consists in the study of the
images of lines, and relies mainly on univariate polynomial algebra, the second
approach is a singularity analysis, and the third method is more numerical,
using integer arithmetics. Each method has its own domain of application, but
they give corroborating results, and lead us to a conjecture on the complexity
of a class of maps constructed from matrix inversions