238 research outputs found

    High-Resolution Magnetic Resonance Imaging of the Regenerating Adult Zebrafish Heart

    Get PDF
    The adult zebrafish is a well-established model for studying heart regeneration, but due to its tissue opaqueness, repair has been primarily assessed using destructive histology, precluding repeated investigations of the same animal. We present a high-resolution, non-invasive in vivo magnetic resonance imaging (MRI) method incorporating a miniature respiratory and anaesthetic perfusion set-up for live adult zebrafish, allowing for visualization of scar formation and heart regeneration in the same animal over time at an isotropic 31 µm voxel resolution. To test the method, we compared well and poorly healing cardiac ventricles using a transgenic fish model that exhibits heat-shock (HS) inducible impaired heart regeneration. HS-treated groups revealed persistent scar tissue for 10 weeks, while control groups were healed after 4 weeks. Application of the advanced MRI technique allowed clear discrimination of levels of repair following cryo- and resection injury for several months. It further provides a novel tool for in vivo time-lapse imaging of adult fish for non-cardiac studies, as the method can be readily applied to image wound healing in other injured or diseased tissues, or to monitor tissue changes over time, thus expanding the range of questions that can be addressed in adult zebrafish and other small aquatic species

    Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of nsp13 helicase

    Get PDF
    The coronavirus disease 2019 (COVID-19) pandemic, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global public health challenge. While the efficacy of vaccines against emerging and future virus variants remains unclear, there is a need for therapeutics. Repurposing existing drugs represents a promising and potentially rapid opportunity to find novel antivirals against SARS-CoV-2. The virus encodes at least nine enzymatic activities that are potential drug targets. Here, we have expressed, purified and developed enzymatic assays for SARS-CoV-2 nsp13 helicase, a viral replication protein that is essential for the coronavirus life cycle. We screened a custom chemical library of over 5000 previously characterized pharmaceuticals for nsp13 inhibitors using a fluorescence resonance energy transfer-based high-throughput screening approach. From this, we have identified FPA-124 and several suramin-related compounds as novel inhibitors of nsp13 helicase activity in vitro. We describe the efficacy of these drugs using assays we developed to monitor SARS-CoV-2 growth in Vero E6 cells

    The Internet as a Small Business E-Commerce Ecosystem.

    Get PDF
    The purpose of this chapter is to analyse how the ecosystem concept can be applied to small businesses and how the Internet and e-commerce can help SMEs harness the required resources to enhance their competitive performance in the marketplace. The chapter will investigate the wide variety of e-commerce applications that are available to small businesses to help address the issue of limited resources. It will provide an ecosystem map illustrating how each functional area of a small business can utilise Internet e-commerce applications to enhance their resource base. The chapter also explores the opportunities and threats that the e-commerce ecosystem model poses for small, medium-sized enterprises (SMEs). This is based upon empirical research consisting of three focus group interviews undertaken with small and medium-sized retail service firms located in the Herefordshire and Worcestershire regions of the United Kingdom in January–February 2014

    Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of Nsp14 RNA cap methyltransferase

    Get PDF
    The COVID-19 pandemic has presented itself as one of the most critical public health challenges of the century, with SARS-CoV-2 being the third member of the Coronaviridae family to cause a fatal disease in humans. There is currently only one antiviral compound, remdesivir, that can be used for the treatment of COVID-19. To identify additional potential therapeutics, we investigated the enzymatic proteins encoded in the SARS-CoV-2 genome. In this study, we focussed on the viral RNA cap methyltransferases, which play key roles in enabling viral protein translation and facilitating viral escape from the immune system. We expressed and purified both the guanine-N7 methyltransferase nsp14, and the nsp16 2′-O-methyltransferase with its activating cofactor, nsp10. We performed an in vitro high-throughput screen for inhibitors of nsp14 using a custom compound library of over 5000 pharmaceutical compounds that have previously been characterised in either clinical or basic research. We identified four compounds as potential inhibitors of nsp14, all of which also showed antiviral capacity in a cell-based model of SARS-CoV-2 infection. Three of the four compounds also exhibited synergistic effects on viral replication with remdesivir

    Computational Methods to Study Kinetics of DNA Replication

    Full text link
    New technologies such as DNA combing have led to the availability of large quanti-ties of data that describe the state of DNA while undergoing replication in S phase. In this chapter, we describe methods used to extract various parameters of replica-tion — fork velocity, origin initiation rate, fork density, numbers of potential and utilized origins — from such data. We first present a version of the technique that applies to “ideal ” data. We then show how to deal with a number of real-world complications, such as the asynchrony of starting times of a population of cells, the finite length of fragments used in the analysis, and the finite amount of DNA in a chromosome. Key words: DNA replication, replication fork velocity, origin initiation

    Break dosage, cell cycle stage and DNA replication influence DNA double strand break response

    Get PDF
    DNA double strand breaks (DSBs) can be repaired by non-homologous end joining (NHEJ) or homology-directed repair (HR). HR requires nucleolytic degradation of 5′ DNA ends to generate tracts of single-stranded DNA (ssDNA), which are also important for the activation of DNA damage checkpoints. Here we describe a quantitative analysis of DSB processing in the budding yeast Saccharomyces cerevisiae. We show that resection of an HO endonuclease-induced DSB is less extensive than previously estimated and provide evidence for significant instability of the 3′ ssDNA tails. We show that both DSB resection and checkpoint activation are dose-dependent, especially during the G1 phase of the cell cycle. During G1, processing near the break is inhibited by competition with NHEJ, but extensive resection is regulated by an NHEJ-independent mechanism. DSB processing and checkpoint activation are more efficient in G2/M than in G1 phase, but are most efficient at breaks encountered by DNA replication forks during S phase. Our findings identify unexpected complexity of DSB processing and its regulation, and provide a framework for further mechanistic insights

    Plx1 is required for chromosomal DNA replication under stressful conditions

    Get PDF
    Polo-like kinase (Plk)1 is required for mitosis progression. However, although Plk1 is expressed throughout the cell cycle, its function during S-phase is unknown. Using Xenopus laevis egg extracts, we demonstrate that Plx1, the Xenopus orthologue of Plk1, is required for DNA replication in the presence of stalled replication forks induced by aphidicolin, etoposide or reduced levels of DNA-bound Mcm complexes. Plx1 binds to chromatin and suppresses the ATM/ATR-dependent intra-S-phase checkpoint that inhibits origin firing. This allows Cdc45 loading and derepression of DNA replication initiation. Checkpoint activation increases Plx1 binding to the Mcm complex through its Polo box domain. Plx1 recruitment to chromatin is independent of checkpoint mediators Tipin and Claspin. Instead, ATR-dependent phosphorylation of serine 92 of Mcm2 is required for the recruitment of Plx1 to chromatin and for the recovery of DNA replication under stress. Depletion of Plx1 leads to accumulation of chromosomal breakage that is prevented by the addition of recombinant Plx1. These data suggest that Plx1 promotes genome stability by regulating DNA replication under stressful conditions

    CRK9 contributes to regulation of mitosis and cytokinesis in the procyclic form of Trypanosoma brucei

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>Trypanosoma brucei </it>cell cycle is regulated by combinations of cyclin/CRKs (cdc2 related kinases). Recently, two additional cyclins (CYC10, CYC11) and six new CRK (CRK7-12) homologues were identified in the <it>T. brucei </it>genome database <abbrgrp><abbr bid="B1">1</abbr><abbr bid="B2">2</abbr></abbrgrp>.</p> <p>Results</p> <p>Individual RNAi knockdowns of these new proteins in the procyclic form of <it>T. brucei </it>showed no apparent phenotype except for the CRK9 depletion, which enriched the cells in G2/M phase. But a similar CRK9 knockdown in the bloodstream form caused no apparent phenotype. CRK9 lacks the typical PSTAIRE motif for cyclin binding and the phenylalanine "gatekeeper" but binds to cyclin B2 <it>in vitro </it>and localizes to the nucleus in both forms of <it>T. brucei</it>. CRK9-depleted procyclic-form generated no detectable anucleate cells, suggesting an inhibition of cytokinesis by CRK9 depletion as well. The knockdown enriched cells with one nucleus, one kinetoplast and two closely associated basal bodies with an average distance of 1.08 mm in between, which was shorter than the control value of 1.36 μm, and the cells became morphologically deformed and rounded with time.</p> <p>Conclusion</p> <p>CRK9 may play a role in mediating the segregation between the two kinetoplast/basal body pairs prior to cytokinetic initiation. Since such a segregation over a relatively significant distance is essential for cytokinetic initiation only in the procyclic but may not be in the bloodstream form, CRK9 could be specifically involved in regulating cytokinetic initiation in the procyclic form of <it>T. brucei</it>.</p

    Transcription Initiation Activity Sets Replication Origin Efficiency in Mammalian Cells

    Get PDF
    Genomic mapping of DNA replication origins (ORIs) in mammals provides a powerful means for understanding the regulatory complexity of our genome. Here we combine a genome-wide approach to identify preferential sites of DNA replication initiation at 0.4% of the mouse genome with detailed molecular analysis at distinct classes of ORIs according to their location relative to the genes. Our study reveals that 85% of the replication initiation sites in mouse embryonic stem (ES) cells are associated with transcriptional units. Nearly half of the identified ORIs map at promoter regions and, interestingly, ORI density strongly correlates with promoter density, reflecting the coordinated organisation of replication and transcription in the mouse genome. Detailed analysis of ORI activity showed that CpG island promoter-ORIs are the most efficient ORIs in ES cells and both ORI specification and firing efficiency are maintained across cell types. Remarkably, the distribution of replication initiation sites at promoter-ORIs exactly parallels that of transcription start sites (TSS), suggesting a co-evolution of the regulatory regions driving replication and transcription. Moreover, we found that promoter-ORIs are significantly enriched in CAGE tags derived from early embryos relative to all promoters. This association implies that transcription initiation early in development sets the probability of ORI activation, unveiling a new hallmark in ORI efficiency regulation in mammalian cells
    corecore