94 research outputs found

    Southern Africa Climate Over the Recent Decades:Description, Variability and Trends

    Get PDF
    South of 15°S, southern Africa has a subtropical climate, which is affected by temperate and tropical weather systems and comes under the influence of the Southern Hemisphere high-pressure systems. Most rainfall occurs in austral summer, but the southwest experiences winter rainfall. Much of the precipitation in summer is of convective origin forced by large-scale dynamics. There is a marked diurnal cycle in rainfall in summer. The El Niño Southern Oscillation (ENSO) influences interannual rainfall variability. In austral summer, drought tends to occur during El Niño, while above-normal rainfall conditions tend to follow La Niña. During El Niño, higher than normal atmospheric pressure anomalies, detrimental to rainfall, occur due to changes in the global atmospheric circulation. This also weakens the moisture transport from the Indian Ocean to the continent. The opposite mechanisms happen during La Niña. On top of the variability related to ENSO, the Pacific Ocean also influences the decadal variability of rainfall. Additionally, the Angola Current, the Agulhas Current, the Mozambique Channel and the southwest Indian Ocean affect rainfall variability. Over the last 40 to 60 years, near-surface temperatures have increased over almost the whole region, summer precipitation has increased south of 10°S, and winter precipitation has mostly decreased in South Africa. Meanwhile, the Agulhas Current and the Angola Current have warmed, and the Benguela Current has cooled

    Southern African summer-rainfall variability, and its teleconnections, on interannual to interdecadal timescales in CMIP5 models

    Get PDF
    23 pagesInternational audienceThis study provides the first assessment of CMIP5 model performances in simulating southern Africa (SA) rainfall variability in austral summer (Nov–Feb), and its teleconnections with large-scale climate variability at different timescales. Observed SA rainfall varies at three major timescales: interannual (2–8 years), quasi-decadal (8–13 years; QDV) and interdecadal (15–28 years; IDV). These rainfall fluctuations are, respectively, associated with El Niño Southern Oscillation (ENSO), the Interdecadal Pacific Oscillation (IPO) and the Pacific Decadal Oscillation (PDO), interacting with climate anomalies in the South Atlantic and South Indian Ocean. CMIP5 models produce their own variability, but perform better in simulating interannual rainfall variability, while QDV and IDV are largely underestimated. These limitations can be partly explained by spatial shifts in core regions of SA rainfall variability in the models. Most models reproduce the impact of La Niña on rainfall at the interannual scale in SA, in spite of limitations in the representation of ENSO. Realistic links between negative IPO are found in some models at the QDV scale, but very poor performances are found at the IDV scale. Strong limitations, i.e. loss or reversal of these teleconnections, are also noted in some simulations. Such model errors, however, do not systematically impact the skill of simulated rainfall variability. This is because biased SST variability in the South Atlantic and South Indian Oceans strongly impact model skills by modulating the impact of Pacific modes of variability. Using probabilistic multi-scale clustering, model uncertainties in SST variability are primarily driven by differences from one model to another, or comparable models (sharing similar physics), at the global scale. At the regional scale, i.e. SA rainfall variability and associated teleconnections, while differences in model physics remain a large source of uncertainty, the contribution of internal climate variability is increasing. This is particularly true at the QDV and IDV scales, where the individual simulations from the same model tend to differentiate, and the sampling error increase

    Decadal variability of summer Southern African rainfall

    Get PDF

    Spatiotemporal and cross-scale interactions in hydroclimate variability:a case-study in France

    Get PDF
    International audienceUnderstanding how water resources vary in response to climate at different temporal and spatial scales is crucial to inform long-term management. Climate change impacts and induced trends may indeed be substantially modulated by low-frequency (multi-year) variations, whose strength varies in time and space, with large consequences for risk forecasting systems. In this study, we present a spatial classification of precipitation, temperature, and discharge variability in France, based on a fuzzy clustering and wavelet spectra of 152 near-natural watersheds between 1958 and 2008. We also explore phase–phase and phase–amplitude causal interactions between timescales of each homogeneous region. A total of three significant timescales of variability are found in precipitation, temperature, and discharge, i.e., 1, 2–4, and 5–8 years. The magnitude of these timescales of variability is, however, not constant over the different regions. For instance, southern regions are markedly different from other regions, with much lower (5–8 years) variability and much larger (2–4 years) variability. Several temporal changes in precipitation, temperature, and discharge variability are identified during the 1980s and 1990s. Notably, in the southern regions of France, we note a decrease in annual temperature variability in the mid 1990s. Investigating cross-scale interactions, our study reveals causal and bi-directional relationships between higher- and lower-frequency variability, which may feature interactions within the coupled land–ocean–atmosphere systems. Interestingly, however, even though time frequency patterns (occurrence and timing of timescales of variability) were similar between regions, cross-scale interactions are far much complex, differ between regions, and are not systematically transferred from climate (precipitation and temperature) to hydrological variability (discharge). Phase–amplitude interactions are indeed absent in discharge variability, although significant phase–amplitude interactions are found in precipitation and temperature. This suggests that watershed characteristics cancel the negative feedback systems found in precipitation and temperature. This study allows for a multi-timescale representation of hydroclimate variability in France and provides unique insight into the complex nonlinear dynamics of this variability and its predictability

    Training deep learning models with a multi-station approach and static aquifer attributes for groundwater level simulation: what’s the best way to leverage regionalised information?

    Get PDF
    In this study, we used deep learning models with recurrent structure neural networks to simulate large-scale groundwater level (GWL) fluctuations in northern France. We developed a multi-station collective training for GWL simulations, using both “dynamic” variables (i.e. climatic) and static aquifer characteristics. This large-scale approach offers the possibility of incorporating dynamic and static features to cover more reservoir heterogeneities in the study area. Further, we investigated the performance of relevant feature extraction techniques such as clustering and wavelet transform decomposition, intending to simplify network learning using regionalised information. Several modelling performance tests were conducted. Models specifically trained on different types of GWL, clustered based on the spectral properties of the data, performed significantly better than models trained on the whole dataset. Clustering-based modelling reduces complexity in the training data and targets relevant information more efficiently. Applying multi-station models without prior clustering can lead the models to learn the dominant station behavior preferentially, ignoring unique local variations. In this respect, wavelet pre-processing was found to partially compensate clustering, bringing out common temporal and spectral characteristics shared by all available time series even when these characteristics are “hidden” because of too small amplitude. When employed along with prior clustering, thanks to its capability of capturing essential features across all time scales (high and low), wavelet decomposition used as a pre-processing technique provided significant improvement in model performance, particularly for GWLs dominated by low-frequency variations. This study advances our understanding of GWL simulation using deep learning, highlighting the importance of different model training approaches, the potential of wavelet preprocessing, and the value of incorporating static attributes

    Changes in Vegetation and Rainfall over West Africa during the Last Three Decades (1981-2010)

    Get PDF
    The decadal variability of rainfall and vegetation over West Africa have been studied over the last three decades, 1981-1990, 1991-2000 and 2001-2010 denoted as 1980s, 1990s and 2000s, respectively. Climate Research Unit (CRU) monthly precipitation and Normalized Difference Vegetation Index (NDVI) from the National Oceanic and Atmosphere Administration (NOAA), all covering the period 1981-2010 have been used. This study aimed to assess the changes in the land surface condition and the spatio-temporal distribution of rainfall over West Africa region. The relationship between rainfall and vegetation indices over this region was determined using Pearson’s correlation. Also, the decadal comparison between rainfall and NDVI over the region was based on the significant t-test and the Pearson’s correlation. Results showed that significant return to wet conditions is observed between decade 1980s and decade 1990s over West Africa, and also during decade 2000s with the exception of central Benin and the western Nigeria. Meanwhile, a regreening of the central Sahel and Sudano-Sahel regions is noted. From 1990s to 2000s, this regreening belt is located in the South and the coastal areas: the Guinea Coast, Sudano-Guinea and western Sahel regions. A northward displacement of this re-greening belt is also detected. Thus, a linear relationship occurs between rainfall and NDVI in the Sudanian savannah region, but it is not the case in the rest of West Africa. This may suggest that the re-growth of vegetation in the Sudanian savannah region may be linked to rainfall supplies. Therefore, re-greening over Sahel region in1990s is related to rainfall recovery. However, this re-greening was not sustained in the decade 2000s due to a slight decrease in rainfall

    Evaluation of CMIP6 model performances in simulating fire weather spatiotemporal variability on global and regional scales

    Get PDF
    Weather and climate play an important role in shaping global wildfire regimes and geographical distributions of burnable area. As projected by the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6), in the near future, fire danger is likely to increase in many regions due to warmer temperatures and drier conditions. General Circulation Models (GCMs) are an important resource in understanding how fire danger will evolve in a changing climate but, to date, the development of fire risk scenarios has not fully accounted for systematic GCM errors and biases. This study presents a comprehensive global evaluation of the spatiotemporal representation of fire weather indicators from the Canadian Forest Fire Weather Index System simulated by 16 GCMs from the 6th Coupled Model Intercomparison Project (CMIP6). While at the global scale, the ensemble mean is able to represent variability, magnitude and spatial extent of different fire weather indicators reasonably well when compared to the latest global fire reanalysis, there is considerable regional and seasonal dependence in the performance of each GCM. To support the GCM selection and application for impact studies, the evaluation results are combined to generate global and regional rankings of individual GCM performance. The findings highlight the value of GCM evaluation and selection in developing more reliable projections of future climate-driven fire danger, thereby enabling decision makers and forest managers to take targeted action and respond to future fire events.</p
    corecore